精英家教网 > 初中数学 > 题目详情
已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠DAE=10°,∠C=50°,求∠B的度数.
分析:首先由AD是△ABC的高和已知∠DAE=10°,∠C=50°,求出∠AED和∠DAC,又由AE是△ABC的角平分线求出∠BAE,再根据三角形外角性质求出∠B.
解答:解:∵AD⊥BC,
∴∠ADC=90°,
∵∠DAE=10°,
∴∠AED=90°-∠DAE=90°-10°=80°,
∵∠C=50°,
∴∠DAC=90°-50°=40°,
∴∠EAC=40°+10°50°,
∵AE平分∠BAC,
∴∠BAE=∠EAC=50°,
∴∠B=∠AED-∠BAE=80°-50°=30°.
点评:本题考查了三角形的内角和定理:三角形的内角和为180°.也考查了三角形的高线与角平分线的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

34、已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•启东市一模)已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,半径为2,AB=6,求线段AD、AE与劣弧DE所围成的图形面积.(结果保留根号和π)《根据2011江苏扬州市中考试题改编》

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.
(1)作出边AC的垂直平分线DE;
(2)当AE=BC时,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在AB、AC上各取一点E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源:专项题 题型:证明题

已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连结BD,CE,BD与CE交于O,连结AO,
           ∠1=∠2;
求证:∠B=∠C

查看答案和解析>>

同步练习册答案