精英家教网 > 初中数学 > 题目详情
26、已知:如图,△ABC中,AB=AC,AD⊥BC于点D,E是AD延长线上一点,连BE、CE.
求证:BE=CE.
分析:由AB=AC,AD⊥BC得到AD是BC的中垂线,由中垂线的性质:中垂线上的点到线段的两个端点的距离相等知,BE=CE.
解答:解:证法1:
∵AB=AC,AD⊥BC,
∴BD=DC.(2分)
∴AD为BC的中垂线.(4分)
∴BE=EC.(6分)

证法2:
∵AB=AC,AD⊥BC,
∴∠BAE=∠CAE.(2分)
∵AB=AC,AE=AE,
∴△ABE≌△ACE.(4分)
∴BE=CE.(6分)
点评:本题利用了中垂线的判定和性质求证;也可利用三角形全等的判定求证.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案