精英家教网 > 初中数学 > 题目详情

【题目】如图,已知一次函数y=﹣x+b与反比例函数y=(k≠0)的图象相交于点P,则关于x的方程﹣x+b=的解是_____

【答案】x1=1,x2=2

【解析】

一次函数与反比例函数交与点P,由图已知点P(1,2),将P点在坐标代入一次函数和反比例函数即可求出一次函数与反比例函数的解析式,然后联立一次函数与反比例函数,即可求出关于x的方程﹣x+b=的解.

解:由题意及图像可知,P的坐标为(1,2),

将P(1,2)带入一次函数y=﹣x+b的解析式,得2= -1+b,解得b=3;

将P(1,2)带入反比例函数y=的解析式,得,解得k= 2;

∵﹣x+b=.

整理有x2-3x+2=0,解得:x1=1,x2=2.

经检验x1=1,x2=2是方程的解,

故正确答案为:x1=1,x2=2.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图是放在地面上的一个长方体盒子,其中AB18cmBC12cmBF10cm,点M在棱AB上,且AM6cm,点NFG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程为(  )

A.20cmB.2cmC.12+2cmD.18cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】a,b,c△ABC的三条边,关于x的方程x2+x+c-a=0有两个相等的实数根,方程3cx+2b=2a的根为x=0.

(1)试判断△ABC的形状;

(2)若a,b为方程x2+mx-3m=0的两个根,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图四边形ABCDAB=AD=2A=60°BC=CD=3

1)求∠ADC的度数

2)求四边形ABCD的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=CB,∠ABC=90°DAB延长线上一点,点EBC边上,且BE=BD,连结AEDEDC

①求证:△ABE≌△CBD

②若∠CAE=30°,求∠BDC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=kx+2x轴,y轴分别交于点A(﹣1,0)和点B,与反比例函数y=的图象在第一象限内交于点C(1,n).

(1)求一次函数y=kx+2与反比例函数y=的表达式;

(2)过x轴上的点D(a,0)作平行于y轴的直线l(a>1),分别与直线y=kx+2和双曲线y=交于P、Q两点,且PQ=2QD,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b(k、b为常数,k0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n0)的图象在第二象限交于点C.CDx轴,垂足为D,若OB=2OA=3OD=12.

(1)求一次函数与反比例函数的解析式;

(2)记两函数图象的另一个交点为E,求CDE的面积;

(3)直接写出不等式kx+b≤的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC的边ABAC的外侧分别作等边ABD和等边△ACE,连接DCBE

1)求证:DCBE

2)若BD3BC4 BD⊥BC于点B,请求出△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴交于点,与轴交于点,点坐标为

求该抛物线的解析式;

抛物线的顶点为,在轴上找一点,使最小,并求出点的坐标;

是线段上的动点,过点,交于点,连接.当的面积最大时,求点的坐标;

若平行于轴的动直线与该抛物线交于点,与直线交于点,点的坐标为.问:是否存在这样的直线,使得是等腰三角形?若存在,请求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案