【题目】如图,在矩形纸片
中,
,
,折叠纸片使
点落在边
上的
处,折痕为
.过点
作
交
于
,连接
.
(1)求证:四边形为菱形;
(2)当点在
边上移动时,折痕的端点
,
也随之移动.
①当点与点
重合时(如图
),求菱形
的边长;
②若限定,
分别在边
,
上移动,求出点
在边
上移动的最大距离.
【答案】(1)见解析;(2)①菱形BFEP的边长为cm,②点E在边AD上移动的最大距离为2cm.
【解析】
(1)由折叠的性质得出PB=PE,BF=EF,∠BPF=∠EPF,由平行线的性质得出∠BPF=∠EFP,证出∠EPF=∠EFP,得出EP=EF,因此BP=BF=EF=EP,即可得出结论;
(2)①由矩形的性质得出BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,由对称的性质得出CE=BC=5cm,在Rt△CDE中,由勾股定理求出DE=4cm,得出AE=AD-DE=1cm;在Rt△APE中,由勾股定理得出方程,解方程得出EP=cm即可;
②找到E点离A最近和最远的两种情况即可求出点E在边AD上移动的最大距离.当点Q与点C重合时,点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,即可得出答案.
解:(1)∵折叠纸片使B点落在边AD上的E处,折痕为PQ,
∴点B与点E关于PQ对称,
∴PB=PE,BF=EF,∠BPF=∠EPF.
又∵EF∥AB,
∴∠BPF=∠EFP,
∴∠EPF=∠EFP,
∴EP=EF,
∴BP=BF=FE=EP,
∴四边形BFEP为菱形.
(2)①如图1,
图1
∵四边形ABCD为矩形,
∴BC=AD=5cm,
CD=AB=3cm,∠A=∠D=90°.
∵点B与点E关于PQ对称,
∴CE=BC=5cm.
在Rt△CDE中,DE2=CE2-CD2,
即DE2=52-32,
∴DE=4cm,∴AE=AD-DE=5-4=1(cm).
在Rt△APE中,AE=1,AP=3-PB=3-PE,
∴EP2=12+(3-EP)2,解得EP=cm,
∴菱形BFEP的边长为cm.
②当点Q与点C重合时,如图1,点E离A点最近,由①知,此时AE=1cm.
当点P与点A重合时,如图2,
图2
点E离A点最远,此时四边形ABQE为正方形,
AE=AB=3cm,
∴点E在边AD上移动的最大距离为2cm.
科目:初中数学 来源: 题型:
【题目】如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=a.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.
(1)求证:△COD是等边三角形;
(2)当a=150°时,试判断△AOD的形状,并说明理由;
(3)探究:当a为多少度时,△AOD是等腰三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数的部分图象如图,图象过点(﹣1,0),对称轴为直线
,下列结论:①
;②
;③
;④当
时,
随
的增大而增大.其中正确的结论有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:b是最小的正整数,且a、b满足(c﹣6)2+|a+b|=0,请回答问题
(1)请直接写出a、b、c的值.a= ,b= ,c=
(2)a、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为x,点P在A、B之间运动时,请化简式子:|x+1|﹣|x﹣1|﹣2|x+5|(请写出化简过程)
(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒n(n>0)个单位长度的速度向左运动,同时,点B和点C分别以每秒2n个单位长度和5n个单位长度的速度向右运动,假设经过t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=( )
A. 76° B. 78° C. 80° D. 82°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知O为直线AB上的一点,射线OA表示正北方向,∠COE=90°,射线OF平分∠AOE.
(1)如图1,若∠AOE=70°,则∠COF的度数是 ;
(2)若将∠COE绕点O旋转至图2的位置,试判断∠COF和∠BOE之间的数量关系,并证明你的证明;
(3)若将∠COE绕点O旋转至图3的位置,直接写出2∠COF+∠BOE的度数是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明、小兵、小颖三人的家和学校在同一条东西走向的路上,星期天,老师到这三家进行家访,从学校出发先向东走 250m 到小明家,后又向东走 350m 到小兵家,再向西行 800m 到小颖家,最后回到学校.
(1)以学校为原点,画出数轴并在数轴上分别表示出小明、小兵、小颖家的位置;
(2)小明家距离小颖家多远?
(3)这次家访,老师共走了多少千米的路程?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有理数a,b,c在数轴上的位置如图所示,且|a|=|b|.
(1)用“>”“<”或“=”填空:
b______0,a+b______0,a-c______0,b-c______0;
(2)化简:|c-a|-|c-b|+|a+b|.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:在数轴上点表示数
,
点表示数
,
点表示数
,
是最大的负整数,且
满足
与
互为相反数.
(1)__________,
__________,
__________;
(2)若将数轴折叠,使得点与
点重合,则点
与数_________表示的点重合;
(3)点、
、
开始在数轴上运动,若点
以每秒2个单位长度的速度向左运动,同时,点
和点
分别以每秒1个单位长度和3个单位长度的速度向右运动,假设
秒钟过后,若点
与点
之间的距离表示为
,点
与点
之间的距离表示为
,请问:
的值是否随着时间
的变化而改变?若变化,请说明理由;若不变,请求其值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com