【题目】若关于x的方程(a+1)x2+(2a﹣3)x+a﹣2=0有两个不相等的实根,且关于x的方程的解为整数,则满足条件的所有整数a的和是( )
A.﹣2B.﹣1C.1D.2
【答案】D
【解析】
关于一元二次方程利用一元二次方程的定义和判别式的意义得到且,再解分式方程得到,接着利用分式方程的解为整数得到a=0,2,-1,3,5,-3,然后确定满足条件的的值,从而得到满足条件的所有整数的和.
解:∵关于x的方程(a+1)x2+(2a﹣3)x+a﹣2=0有两个不相等的实根,
∴a+1≠0且△=(2a﹣3)2﹣4(a+1)×(a﹣2)>0,
解得a<且a≠﹣1.
把关于x的方程去分母得ax﹣1﹣x=3,
解得x=,
∵x≠﹣1,
∴≠﹣1,解得a≠﹣3,
∵x=为整数,
∴a﹣1=±1,±2,±4,
∴a=0,2,﹣1,3,5,﹣3,
而a<且a≠﹣1且a≠﹣3,
∴a的值为0,2,
∴满足条件的所有整数a的和是2.
故选:D.
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,弦CD与直径AB相交于点F.点E在⊙O外,作直线AE,且∠EAC=∠D.
(1)求证:直线AE是⊙O的切线.
(2)若∠BAC=30°,BC=4,cos∠BAD=,CF=,求BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知一次函数=的图象经过点A(1,0),与反比例函数=(>0)的图象相交于点B(2,1).
(1)求的值和一次函数的解析式;
(2)结合图象直接写出:当>0时,不等式>的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(c≠4a),其图象L经过点A(-2,0).
(1)求证:b2-4ac>0;
(2)若点B(-,b+3)在图象L上,求b的值;
(3)在(2)的条件下,若图象L的对称轴为直线x=3,且经过点C(6,-8),点D(0,n)在y轴负半轴上,直线BD与OC相交于点E,当△ODE为等腰三角形时,求n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】实验初中组织了“英语手抄报”征集活动,现从中随机抽取部分作品,按A、B、C、D四个等级进行评价,并根据统计结果绘制了如下两幅不完整的统计图.
(1)抽取了_____份作品;
(2)此次抽取的作品中等级为B的作品有______份,并补全条形统计图;
(3)若该校共征集到600份作品,请估计等级为A的作品约有多少份?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题发现:如图1,△ACB和△DCE均为等边三角形,当△DCE旋转至点A,D,E在同一直线上,连接BE,易证△BCE≌△ACD.则
①∠BEC=______°;②线段AD、BE之间的数量关系是______.
(2)拓展研究:
如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A、D、E在同一直线上,若AE=15,DE=7,求AB的长度.
(3)探究发现:
如图3,P为等边△ABC内一点,且∠APC=150°,且∠APD=30°,AP=5,CP=4,DP=8,求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:
(1)九(1)班的学生人数为 ,并把条形统计图补充完整;
(2)扇形统计图中m= ,n= ,表示“足球”的扇形的圆心角是 度;
(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连结EF、EO,若DE=,∠DPA=45°.
(1)求⊙O的半径;
(2)求图中阴影部分的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com