精英家教网 > 初中数学 > 题目详情
(2004•内江)如图,AB=AD,BC=DC,AC与BD相交于点E,由这些条件你能推出哪些结论?(不再添加辅助线,不再标注其它字母.不写推理过程,只要求写出四个你认为正确的结论即可)

【答案】分析:由AB=AD,BC=DC知,AC是BD的中垂线,∴DE⊥AC,可由SSS证得△ABC≌△ADC及AC平分∠BAD等.
解答:解:由已知得,AC垂直平分BD,即直线AC为四边形ABCD的对称轴,
由对称性可知:DE=BE,DE⊥AC于E,△ABC≌△ADC,AC平分∠BAD等.
点评:本题考查了三角形全等的判定和性质.做题时要从已知开始思考,结合全等的判定方法进行取舍.
练习册系列答案
相关习题

科目:初中数学 来源:2002年全国中考数学试题汇编《二次函数》(04)(解析版) 题型:解答题

(2004•内江)如图,已知抛物线y=ax2+bx+c与x轴交于A(k,0)(k<0)、B(3,0)两点,与y轴正半轴交于C点,且tan∠CAO=3.
(1)求此抛物线的解析式(系数中可含字母k);
(2)设点D(0,t)在x轴下方,点E在抛物线上,若四边形ADEC为平行四边形,试求t与k的函数关系式;
(3)若题(2)中的平行四边形ADEC为矩形,试求出D的坐标.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《二次函数》(05)(解析版) 题型:解答题

(2004•内江)如图,等腰直角三角形ABC的斜边BC的长为8,平行于BC边的直线分别交AB,AC于M,N,将△AMN沿直线MN翻折,得到△A′MN,设△A′MN与△ABC的公共部分的面积为y,MN的长为x.
(1)如果A′在△ABC的内部,求出以x为自变量的函数y的解析式,并指出自变量x的取值范围;
(2)是否存在直线MN,使y的值为△ABC面积的?如果存在,则求出求出对应的x值;如果不存在,则说明理由.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《二次函数》(05)(解析版) 题型:解答题

(2004•内江)如图,已知抛物线y=ax2+bx+c与x轴交于A(k,0)(k<0)、B(3,0)两点,与y轴正半轴交于C点,且tan∠CAO=3.
(1)求此抛物线的解析式(系数中可含字母k);
(2)设点D(0,t)在x轴下方,点E在抛物线上,若四边形ADEC为平行四边形,试求t与k的函数关系式;
(3)若题(2)中的平行四边形ADEC为矩形,试求出D的坐标.

查看答案和解析>>

科目:初中数学 来源:2004年四川省内江市中考数学试卷(加试卷)(解析版) 题型:解答题

(2004•内江)如图,已知抛物线y=ax2+bx+c与x轴交于A(k,0)(k<0)、B(3,0)两点,与y轴正半轴交于C点,且tan∠CAO=3.
(1)求此抛物线的解析式(系数中可含字母k);
(2)设点D(0,t)在x轴下方,点E在抛物线上,若四边形ADEC为平行四边形,试求t与k的函数关系式;
(3)若题(2)中的平行四边形ADEC为矩形,试求出D的坐标.

查看答案和解析>>

科目:初中数学 来源:2004年四川省内江市中考数学试卷(加试卷)(解析版) 题型:解答题

(2004•内江)如图,等腰直角三角形ABC的斜边BC的长为8,平行于BC边的直线分别交AB,AC于M,N,将△AMN沿直线MN翻折,得到△A′MN,设△A′MN与△ABC的公共部分的面积为y,MN的长为x.
(1)如果A′在△ABC的内部,求出以x为自变量的函数y的解析式,并指出自变量x的取值范围;
(2)是否存在直线MN,使y的值为△ABC面积的?如果存在,则求出求出对应的x值;如果不存在,则说明理由.

查看答案和解析>>

同步练习册答案