精英家教网 > 初中数学 > 题目详情
如图,△ABC中,∠C=90°,AB=6,AC=3,动点P在AB上运动,精英家教网以点P为圆心,PA为半径画⊙P交AC于点Q.
(1)比较AP,AQ的大小,并证明你的结论;
(2)当⊙P与BC相切时,求AP的长,并求此时弓形(阴影部分)的面积.
分析:(1)Rt△ABC中,根据AB、AC的长,易证得∠A=60°;若连接PQ,则△PAQ是等边三角形,由此可得出AP、AQ的大小关系.
(2)当⊙P与BC相切时,若切点为E,在Rt△PBE中,PB=2PE=2PA,由此可求出⊙P的半径;那么阴影部分的面积可由扇形PAQ和等边△PAQ的面积差求得.
解答:精英家教网解:(1)AP=AQ,证明如下:(1分)
∵∠C=90°,AB=6,AC=3,
∴∠A=60°(2分)
连接PQ,
∴△PQA是等边三角形,即AP=AQ;(3分)

(2)当⊙P与BC相切时,如图,设切点为E,连接PE,则PE⊥BC,(4分)
∴PE∥AC,
∴∠EPB=∠A=60°,
∴PB=2PE=2AP(5分)
即AP=6÷3=2,(6分)
S=S扇形PQA-S三角形PQA=
1
6
π×22-
3
4
×22
=
2
3
π-
3
.(8分)
点评:此题主要考查了直角三角形的性质、切线的性质以及扇形的面积公式等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案