精英家教网 > 初中数学 > 题目详情
直线l:y=-x+3分别交x轴、y轴于B、A两点,等腰直角△CDM斜边落在x轴上,且CD=6,如图1所示.若直线l以每秒3个单位向上作匀速平移运动,同时点C从(6,0)开始以每秒2个单位的速度向右作匀速平移运动,如图2所示,设移动后直线l运动后分别交x轴、y轴于Q、P两点,以OP、OQ为边作如图矩形OPRQ.设运动时间为t秒.
(1)求运动后点M、点Q的坐标(用含t的代数式表示);
(2)若设矩形OPRQ与运动后的△CDM的重叠部分面积为S,求S与t的函数关系式,并写出t相应的取值范围;
(3)若直线l和△CDM运动后,直线l上存在点T使∠OTC=90°,则当在线段PQ上符合条件的点T有且只有两个时,求t的取值范围.

【答案】分析:(1)过M作MN⊥CD于N,根据等腰直角三角形的性质求出CN=DN=MN=3,求出B的坐标,即可得到M、Q的坐标;
(2)①0<t<1时,s=0②1<t≤2.5,如图2,S=CQ•QH,把CQ、QH代入即可求出答案;③当2.5<t<4时,如图(3)同法可求DQ,根据s=S△CMD-S△DQE,求出△CMD和△DQE的面积代入即可;④当t≥4时,s=S△CMD=×6×3=9;
(3)①直线L经过点C,即C、Q重合,根据4+4t=6+2t,求出即可;②如图直线L切圆于F,证△QFE∽△QOW,得出
=,代入即可求出t的值,进一步得出t的取值范围.
解答:(1)解:过M作MN⊥CD于N,
∵等腰直角△CDM,
∴CN=DN=MN=3,
由勾股定理得:MC=MD=3
∵点C从(6,0)开始以每秒2个单位的速度向右作匀速平移运动,
∴ON=6+3+2t=9+2t,
∵y=-x+3,
∴当y=0时,x=4,
∴B(4,0),
∵直线l以每秒3个单位向上作匀速平移运动,
∴直线PQ的解析式是y=-x+3+3t,
y=0代入得:0=-x+3+3t,
x=4t+4
∴OQ=4+4t,
∴M(9+2t,3),Q(4+4t,0),
答:运动后点M、点Q的坐标分别是(9+2t,3),(4+4t,0).

(2)解:①∵当两图形不重合时,OB=3,OC=6,直线l以每秒3个单位向上作匀速平移运动,同时点C从(6,0)开始以每秒2个单位的速度向右作匀速平移运动
∴0<t<1,s=0,如图1,
②∵当t=2.5时,RQ过M点,
∴1<t≤2.5,如图2,由矩形OPRQ,∠OQH=90°,
∵∠MCD=45°=∠CHQ,
∴CQ=(4+4t)-(6+2t)=2t-2=QH,
∴S=CQ•QH=(2t-2)2=2t2-4t+2,
即:s=2t2-4t+2;
③∵当t=4时,RQ过D点,
∴当2.5<t<4时,如图(3):

同法可求DQ=OD-OQ=(6+6+2t)-(4+4t)=8-2t,
∴s=S△CMD-S△DQE=×6×3-(8-2t)2=-2t2+16t-23,
即:s=-2t2+16t-23;

④∵当t≥4时,△MDC在矩形PRQO的内部,
∴当t≥4时,s=S△CMD=×6×3=9;
答:S与t的函数关系式是s=2t2-4t+2(1<t≤2.5)或s=-2t2+16t-23(2.5<t<4)或s=9(t≥4).

(3)解:①直线L经过点C,即C、Q重合

此时4+4t=6+2t,
解得:t=1;
②如图直线L切圆于F,即点T,OE=EF=3+t,EQ=1+3t

∵∠FQC=∠FQC,∠EFQ=∠COW=90°,
∴△QFE∽△QOW,
=
=
求得:t=3,
∴1<t<3,
答:t的取值范围是1<t<3.
点评:本题主要考查对矩形的性质,相似三角形的性质和判定,等腰三角形的性质和判定,三角形的面积,勾股定理,一次函数的性质,解一元一次方程,等腰直角三角形的性质,三角形的内角和定理等知识点的理解和掌握,此题是一个综合性比较强的题目,有一定的难度,用的数学思想是分类讨论思想.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AE=EB,AF=FC,有一同学发现EF与BC存在以下关系:EF∥BC,且EF=
12
BC.
(1)请你用学过的知识来说明上述关系成立的理由.
(2)如图:在(1)的结论下,过BC、EF作直线,过A作BC的平行线.将AC向左平移到DC,得到图②,将AC向右平移到DC,得到图③.在图②和图③中猜想线段EF与线段AD、BC的关系,请把你猜想的结论填在图下的方框内,并说明理由.
精英家教网
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O1与⊙O2相交于点A和B,经过A作直线与⊙O1相交于D,与⊙O2相交于C,设弧BC的中点为M,弧BD的中点为N,线段CD的中点为K.求证:MK⊥KN.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,抛物线y=ax2+bx(a>0)与双曲线y=
kx
相交于点A,B.已知点A的坐标为(1,4),点B在第三象限内,且△AOB的面积为3(O为坐标原点).
(1)求实数a,b,k的值;
(2)如图2,过抛物线上点A作直线AC∥x轴,交抛物线于另一点C,求所有满足△COE∽△BOA的点E的坐标(提示:C点的对应点为B).
精英家教网精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,直线AB与Y轴和X轴分别交于点A、点B,与反比例精英家教网函数y=
mx
在第一象限的图象交于点c(1,6)、点D(3,n).过点C作CE上y轴于E,过点D作DF上x轴于F.
(1)求m,n的值;
(2)求直线AB的函数解析式;
(3)求证:△AEC≌△DFB.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.
证明:∵DG⊥BC,AC⊥BC(已知)
∴∠DGB=∠ACB=90°(垂直定义)
∴DG∥AC(
同位角相等,两直线平行

∴∠2=
∠ACD
两直线平行,内错角相等

∵∠1=∠2(已知)
∴∠1=∠
ACD
(等量代换)
∴EF∥CD(
同位角相等,两直线平行

∴∠AEF=∠
ADC
两直线平行,同位角相等

∵EF⊥AB(已知)
∴∠AEF=90°(
垂直定义

∴∠ADC=90°(
等量代换

∴CD⊥AB(
垂直定义

查看答案和解析>>

同步练习册答案