精英家教网 > 初中数学 > 题目详情
精英家教网在Rt△ABC中,∠BAC=90°,三角形的角平分线CE和高AD相交于点F,过F作FG∥BC交AB于点G,求证:(1)AE=BG.(2)若∠B=30°,FD=5,求四边形EBDF的面积.
分析:(1)过F作FM⊥AC并延长MF交BC于N,判定四边形GBDF为平行四边形,进而证明△AMF≌△NDF,得出AE=BG;
(2)根据S四EBDF=S△ABC-S△AEC-S△CDF,进而求出几个三角形的面积,从而得出答案.
解答:(1)证明:∵∠BAC=90°,AD⊥BC,
∴∠1+∠BAD=∠B+∠BAD=90°,
∴∠1=∠B,
∵CE是角平分线,
∴∠2=∠3,
∵∠5=∠1+∠2,∠4=∠3+∠B,
∴∠4=∠5,
∴AE=AF,
过F作FM⊥AC并延长MF交BC于N,
∴MN∥AB,
∵FG∥BD,
∴四边形GBNF为平行四边形,
∴GB=FN,
∵AD⊥BC,CE为角平分线,
∴FD=FM,
在Rt△AMF和Rt△NDF中
∠AMF=∠NDF=90°
FM=FD
∠6=∠7

∴△AMF≌△NDF,
∴AF=FN,
∴AE=BG;

(2)解:∵∠B=30°,AB∥NF,
∴∠8=30°,
在Rt△FDN中,FN=2FD=10,
∴AF=AE=BG=FN=10,
∴∠BAD=60°,
∴△AEF为等边三角形,
∴EF=AE=10,
∵GF∥BC,
∴∠EGB=∠B=30°,
∠4=∠9+∠10=60°,
∴∠9=∠10=30°,
EG=EF=10,精英家教网
在Rt△ABC中,tan30°=
AC
AB
=
AC
30
=
3
3

∴AC=10
3
,∠2=30°,
在Rt△CDF中,tan∠3=
FD
CD
=
5
CD
=
3
3

∴CD=5
3

∴S四EBDF=S△ABC-S△AEC-S△CDF=
1
2
×30×10
3
-
1
2
×10×10
3
-
1
2
×5×5
3
=
175
3
2
点评:此题主要考查了平行四边形的性质与判定以及全等三角形的性质与判定以及三角函数的应用等知识,题目综合性较强,四边形面积求法利用三角形之间的差求出是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一点,以BD为直径的⊙O切AC于E,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知:在Rt△ABC中,∠C=90°,AB=12,点D是AB的中点,点O是△ABC的重心,则OD的长为(  )
A、12B、6C、2D、3

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,已知a及∠A,则斜边应为(  )
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求画出图形)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,则AC:BC的值为(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步练习册答案