【题目】如图,在平面直角坐标系中,△OAB的边OB在x轴的正半轴上,AO=AB,M是边AB的中点,经过点M的反比例函数y=(k>0,x>0)的图象与边OA交于点C,则的值为__.
【答案】
【解析】
过点C、点A、点M作x轴的垂线CD、AE、MF,由平行线截线段成比例定理可得==;再由三角形的中位线定理得出MF=AE,EF=BF=BE=OE,从而OF=OE;由点C和点M均在反比例函数y=(k>0,x>0)的图象上,得出ODCD=OFMF=k,将前面所得的相关线段的数量关系代入化简,得出·=,则可求得答案.
解:如图,过点C、点A、点M作x轴的垂线CD、AE、MF,
则CD∥AE∥MF,
∴==,
∵AO=AB,AE⊥x轴,
∴OE=BE,
∵M是边AB的中点,MF∥AE,
∴MF=AE,EF=BF=BE=OE,
∴OF=OE,
∵点C和点M均在反比例函数y=(k>0,x>0)的图象上,
∴ODCD=OFMF=k,
∴ODCD=OE×AE,
∴=,
∵==,
∴·=,
∴=,(负值舍去).
故答案为:.
科目:初中数学 来源: 题型:
【题目】如图将一张矩形纸片ABCD沿对角线BD翻折,点C的对应点为C′,AD与BC′交于点E,若∠ABE=30°,BC=3,则DE的长度为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小宜跟几位同学在某快餐厅吃饭,如图为此快餐厅的菜单.若他们所点的餐食总共为10份盖饭,x杯饮料,y份凉拌菜.
(1)他们点了 份A套餐, 份B套餐, 份C套餐(均用含x或y的代数式表示);
(2)若x=6,且A、B、C套餐均至少点了1份,则最多有 种点餐方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A,B是⊙C上的两个点,点P在⊙C的内部.若∠APB为直角,则称∠APB为AB关于⊙C的内直角,特别地,当圆心C在∠APB边(含顶点)上时,称∠APB为AB关于⊙C的最佳内直角.如图1,∠AMB是AB关于⊙C的内直角,∠ANB是AB关于⊙C的最佳内直角.在平面直角坐标系xOy中.
(1)如图2,⊙O的半径为5,A(0,﹣5),B(4,3)是⊙O上两点.
①已知P1(1,0),P2(0,3),P3(﹣2,1),在∠AP1B,∠AP2B,∠AP3B,中,是AB关于⊙O的内直角的是 ;
②若在直线y=2x+b上存在一点P,使得∠APB是AB关于⊙O的内直角,求b的取值范围.
(2)点E是以T(t,0)为圆心,4为半径的圆上一个动点,⊙T与x轴交于点D(点D在点T的右边).现有点M(1,0),N(0,n),对于线段MN上每一点H,都存在点T,使∠DHE是DE关于⊙T的最佳内直角,请直接写出n的最大值,以及n取得最大值时t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图①是由五个完全相同的小正方体组成的立体图形.将图①中的一个小正方体改变位置后如图②,则三视图发生改变的是( )
A.主视图B.俯视图
C.左视图D.主视图、俯视图和左视图都改变
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,平面内有一点到的三个顶点的距离分别为若有,则称点为关于点的勾股点.
如图2,在的方格纸中,每个小正方形的边长均为的顶点在格点上,请找出所有的格点,使点为关于点的勾股点;
如图3, 为等腰直角三角形,是斜边延长线上一点,连接,以为直角边作等腰直角三角形 (点顺时针排列),,连接 求证:点为关于点的勾股点;
如图4,点是矩形外一点,且点是关于点的勾股点,若,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,PB与⊙O相切于点B,连接PA交⊙O于点C,连接BC.
(1)求证:∠BAC=∠CBP;
(2)求证:PB2=PCPA;
(3)当AC=6,CP=3时,求sin∠PAB的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司计划招募10名技术人员,他们对20名面试合格人员进行了测试,测试包括理论知识和实践操作两部分,20名应聘者的成绩排名情况如图所示,下面有3个推断:
①甲测试成绩非常优秀,入选的可能性很大;
②乙的理论知识排名比实践操作排名靠前;
③位于椭圆形区域内的应聘者应该加强该专业理论知识的学习;
其中合理的是_____.(写序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形是正方形,将线段绕点逆时针旋转,得到线段,连接,过点作交的延长线于,连接.
(1)依题意补全图1;
(2)直接写出的度数;
(3)连接,用等式表示线段与的数量关系,并证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com