精英家教网 > 初中数学 > 题目详情
如图1,直线y=-x+2与x轴、y轴分别相交于点C、D,一个含45°角的直角三角板的锐角顶点A在线段CD上滑动,滑动过程中三角板的斜边始终经过坐标原点,∠A的另一边与x轴的正半轴相交于点B.
(1)试探索△AOB能否为等腰三角形?若能,请求出点B的坐标;若不能,请说明理由.
(2)如图2,若将题中“直线y=-x+2”、“∠A的另一边与x轴的正半轴相交于点B”分别改为:“直线y=-x+t(t>0)”、“∠A的另一边与x轴的负半轴相交于点B”(如图2),其他条件保持不变,请探索(1)中的问题(只考虑点A在线段CD的延长线上且不包括点D时的情况)
精英家教网
分析:(1)由题意,△AOB为等腰三角形有三种情况:①OA=OB,②AB=OB,③AB=AO,根据等腰三角形的性质和等腰直角三角形的性质,分别分析,解答出点B的坐标即可;
(2)同(1),△AOB为等腰三角形有三种情况:①OA=OB,②AB=OB,③AB=AO,根据等腰三角形的性质,解答出点B的坐标即可.
解答:解:(1)由题意,把x=0代入y=-x+2,y=0代入y=-x+2,
∴点C、D的坐标分别为(2,0),(0,2),
∴OC=OD=2,CD=2
2
,∠OCD=∠ODC=45°,
当点A在线段CD上时,△AOB为等腰三角形有如下三种情况:
①OA=OB,则∠OBA=∠OAB=45°,因此∠AOB=90°,
点A与点D重合,点B与点C重合,所以点B的坐标为(2,0);
②AB=OB,则∠BOA=∠OAB=45°=∠OCD,
因此∠ABO=90°,AO=AC,
所以点B为线段的中点,点B的坐标为(1,0);
③AB=AO,由∠CAO=∠ADO+∠AOD得:
∠BAC+45°=∠AOD+45°,
则∠BAC=∠AOD,
又∠OCD=∠ODC,
所以∠ABC=∠OAD,
因此△ABC≌△OAD,
所以AC=OD=2,BC=AD=2
2
-2,
则OB=4-2
2

点B的坐标为(4-2
2
,0),
综上,在滑动过程中△AOB可为等腰三角形,点B的坐标分别为(2,0),(1,0),(4-2
2
,0);

(2)①若OA=OB,则∠OBA=∠OAB=45°,因此∠AOB=90°,点A与点D重合,
则OB=OD=t,所以点B的坐标为(-t,0),故与题意不符;
②若AB=OB,则∠BOA=∠OAB=45°=∠OCD,
因此∠ABO=90°,不成立;
③若AB=AO,则∠AOB=∠ABO=67.5°,
∴∠AOD=∠BOD-∠AOB=22.5°,
∴∠OAD=∠ODC-∠AOD=22.5°=∠AOD,
∴∠ABC=∠BAC=67.5°,
∴AD=OD=t,CB=CA=
2
t+t

∴OB=CB-CO=
2
t

∴点B的坐标为(-
2
t,0).
综上,在滑动过程中△AOB可为等腰三角形,点B的坐标分别为(-
2
t,0).
点评:本题主要考查了等腰和等腰直角三角形的性质及一次函数与图形坐标问题,要注意的是在解答过程中,要根据不同情况进行分类求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,在平面直角坐标中,直角梯形OABC的顶点A的坐标为(4,0),直线y=-
14
x+3经过顶点B,与y轴交于顶点C,AB∥OC.
(1)求顶点B的坐标;
(2)如图2,直线l经过点C,与直线AB交于点M,点O?为点O关于直线l的对称点,连接CO?,并延长交直线AB于第一象限的点D,当CD=5时,求直线l的解析式;
(3)在(2)的条件下,点P在直线l上运动,点Q在直线OD上运动,以P、Q、B、C为顶点的四边形能否成为平行四边形?若能,求出点P的坐标;若不能,说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,该直线是某个一次函数的图象,则此函数的解析式为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图,在直线l上取A,B两点,使AB=10厘米,若在l上再取一点C,使AC=2厘米,M,N分别是AB,AC中点.求MN的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,两直线y1=ax+3与y2=
14
x相交于P点,当y2<y1≤3时,x的取值范围为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•南岗区一模)如图1,直线y=-kx+6k(k>0)与x轴、y轴分别相交于点A、B,且△AOB的面积是24.
(1)求直线AB的解析式;
(2)如图2,点P从点O出发,以每秒2个单位的速度沿折线OA-AB运动;同时点E从点O出发,以每秒1个单位的速度沿y轴正半轴运动,过点E作与x轴平行的直线l,与线段AB相交于点F,当点P与点F重合时,点P、E均停止运动.连接PE、PF,设△PEF的面积为S,点P运动的时间为t秒,求S与t的函数关系式,并直接写出自变量t的取值范围;
(3)在(2)的条件下,过P作x轴的垂线,与直线l相交于点M,连接AM,当tan∠MAB=
12
时,求t值.

查看答案和解析>>

同步练习册答案