精英家教网 > 初中数学 > 题目详情
在平面直角坐标系xOy中,矩形ABCO的顶点A、C分别在y轴、x轴正半轴上,点P在AB上,PA=1,AO=2.经过原点的抛物线y=mx2-x+n的对称轴是直线x=2.
(1)求出该抛物线的解析式.
(2)如图1,将一块两直角边足够长的三角板的直角顶点放在P点处,两直角边恰好分别经过点O和C.现在利用图2进行如下探究:
①将三角板从图1中的位置开始,绕点P顺时针旋转,两直角边分别交OA、OC于点E、F,当点E和点A重合时停止旋转.请你观察、猜想,在这个过程中,
PE
PF
的值是否发生变化?若发生变化,说明理由;若不发生变化,求出
PE
PF
的值.
②设(1)中的抛物线与x轴的另一个交点为D,顶点为M,在①的旋转过程中,是否存在点F,使△DMF为等腰三角形?若不存在,请说明理由.
(1)∵抛物线y=mx2-x+n经过原点,∴n=0.
∵对称轴为直线x=2,∴-
-1
2m
=2,解得m=
1
4

∴抛物线的解析式为:y=
1
4
x2-x.

(2)①
PE
PF
的值不变.理由如下:
如答图1所示,过点P作PG⊥x轴于点G,则PG=AO=2.

∵PE⊥PF,PA⊥PG,∴∠APE=∠GPF.
在Rt△PAE与Rt△PGF中,
∵∠APE=∠GPF,∠PAE=∠PGF=90°,
∴Rt△PAERt△PGF.
PE
PF
=
PA
PG
=
1
2

②存在.
抛物线的解析式为:y=
1
4
x2-x,
令y=0,即
1
4
x2-x=0,解得:x=0或x=4,∴D(4,0).
又y=
1
4
x2-x=
1
4
(x-2)2-1,∴顶点M坐标为(2,-1).
若△DMF为等腰三角形,可能有三种情形:
(I)FM=FD.如答图2所示:

过点M作MN⊥x轴于点N,则MN=1,ND=2,MD=
MN2+ND2
=
12+22
=
5

设FM=FD=x,则NF=ND-FD=2-x.
在Rt△MNF中,由勾股定理得:NF2+MN2=MF2
即:(2-x)2+1=x2,解得:x=
5
4

∴FD=
5
4
,OF=OD-FD=4-
5
4
=
11
4

∴F(
11
4
,0);
(II)若FD=DM.如答图3所示:

此时FD=DM=
5
,∴OF=OD-FD=4-
5

∴F(4-
5
,0);
(III)若FM=MD.
由抛物线对称性可知,此时点F与原点O重合.
而由题意可知,点E与点A重合后即停止运动,故点F不可能运动到原点O.
∴此种情形不存在.
综上所述,存在点F(
11
4
,0)或F(4-
5
,0),使△DMF为等腰三角形.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知A(0,1)、D(4,3),P是以AD为对角线的矩形ABDC内部(不在各边上)的一个动点,点C在y轴上,抛物线y=ax2+bx+1以P为顶点.
(1)能否判断抛物线y=ax2+bx+1的开口方向?请说明理由.
(2)设抛物线y=ax2+bx+1与x轴有交点F、E(F在E的左侧),△EAO与△FAO的面积之差为3,且这条抛物线与线段AD有一个交点的横坐标为
7
2
,这时能确定a、b的值吗?若能,请求出a、b的值;若不能,请确定a、b的取值范围.(本题的图形仅供分析参考用)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.
请探索:是否存在这样的点M,使得线段PB最短;若存在,请求出此时点M的坐标.若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+c与y轴交于点C,与x轴交于点A(x1,0)、B(x2,0)(x1<x2),顶点M的纵坐标为-3,若x1,x2是关于方程x2+(m+1)x+m2-12=0(其中m<0)的两个根,且x12+x22=10.
(1)求A、B两点的坐标;
(2)求抛物线的解析式及点C的坐标;
(3)在抛物线上是否存在点P,使△PAB的面积等于四边形ACBM的面积的2倍?若存在,求出所有符合条件点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,二次函数y=-x2+bx+3的图象经过点A(-1,0),顶点为B.
(1)求这个二次函数的解析式;
(2)若点C的坐标为(4,0),连接BC,过点A作AE⊥BC,垂足为点E.当点D在直线AE上,且满足DE=1时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,O是坐标原点,A(3,0)、B(m,
6
5
)是以OA为直径的⊙M上的两点,且tan∠AOB=
1
2
,BH⊥x轴,垂足为H
(1)求H点的坐标;
(2)求图象经过A、B、O三点的二次函数的解析式;
(3)设点C为(2)中的二次函数图象的顶点,问经过B、C两点的直线是否与⊙M相切,请说明理由.
注:抛物线y=ax2+bx+c(c≠0)的顶点为(-
b
2a
4ac-b2
4a
)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线y=ax2+bx+3经过点A、B、C,已知A(-1,0),B(3,0).
(1)求抛物线的解析式;
(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BDC的面积最大时,求点P的坐标;
(3)如图2,在(2)的条件下,延长DP交x轴于点F,M(m,0)是x轴上一动点,N是线段DF上一点,当△BDC的面积最大时,若∠MNC=90°,请直接写出实数m的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=x2-2x-2交x轴于A、B两点,顶点为C,经过A、B、C三点的圆的圆心为M.
(1)求圆心M的坐标;
(2)求⊙M上劣弧AB的长;
(3)在抛物线上是否存在一点D,使线段OC和MD互相平分?若存在,直接写出点D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

体育课上,老师用绳子围成一个周长为30米的游戏场地,围成的场地是如图所示的矩形ABCD.设边AB的长为x(单位:米),矩形ABCD的面积为S(单位:平方米).
(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围);
(2)若矩形ABCD的面积为50平方米,且AB<AD,请求出此时AB的长.

查看答案和解析>>

同步练习册答案