精英家教网 > 初中数学 > 题目详情
精英家教网如图,在正方形ABCD的边AB上连接等腰直角三角形,然后在等腰直角三角形的直角边上连接正方形,无限重复上述过程,如果第一个正方形ABCD的边长为1,那么第n个正方形的面积为
 
分析:观察图形,分别求得每个正方形的边长,从而发现规律,根据其规律解题即可.
解答:解:可以发现,第一个正方形的边长为(
2
2
0=1,
第2个正方形的边长为(
2
2
1=
2
2

第3个正方形的边长为(
2
2
2=
1
2

第n个正方形的边长为(
2
2
(n-1)
∴第n个正方形的面积=[(
2
2
2]n-1=
1
2n-1
点评:本题利用了等腰直角三角形的性质,直角边长是斜边长的
2
2
倍,及正方形的面积公式求解.找到第n个正方形的边长为(
2
2
n-1是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:在正方形网格上有△ABC,△DEF,说明这两个三角形相似,并求出它们的相似比.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线精英家教网,交BC于点E.
(1)求证:点E是边BC的中点;
(2)若EC=3,BD=2
6
,求⊙O的直径AC的长度;
(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,在Rt△ABC中,∠BAC=90°,AD=CD,点E是边AC的中点,连接DE,DE的延长线与边BC相交于点F,AG∥BC,交DE于点G,连接AF、CG.
(1)求证:AF=BF;
(2)如果AB=AC,求证:四边形AFCG是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•陕西)如图,正三角形ABC的边长为3+
3

(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);
(2)求(1)中作出的正方形E′F′P′N′的边长;
(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6
2
,求另一直角边BC的长.

查看答案和解析>>

同步练习册答案