分析 根据轴对称图形的性质,作出P关于OA、OB的对称点M、N,连接MN,根据两点之间线段最短得到最小值线段,根据等边三角形的性质解答即可.
解答 解:分别作P关于OA、OB的对称点M、N.
连接MN交OA、OB交于Q、R,则△PQR符合条件.
连接OM、ON,
由轴对称的性质可知,OM=ON=OP=10,
∠MON=∠MOP+∠NOP=2∠AOB=2×30°=60°,
则△MON为等边三角形,
∴MN=10,
∵QP=QM,RN=RP,
∴△PQR周长=MN=10,
故答案为:10.
点评 本题考查了轴对称-最短路径问题,根据轴对称的性质作出对称点是解题的关键,掌握线段垂直平分线的性质和等边三角形的性质的灵活运用.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | a+b<0 | B. | c+d>0 | C. | |a+c|=a+c | D. | |b+d|=b+d |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | ∠A=∠1+∠2 | B. | 2∠A=∠1+∠2 | C. | 3∠A=2∠1+∠2 | D. | 3∠A=2(∠1+∠2) |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 5cm或13cm | B. | 2.5cm | C. | 6.5cm | D. | 2.5cm或6.5cm |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com