精英家教网 > 初中数学 > 题目详情
如图,mnÐ1105°,Ð2140°,求Ða的度数.

 

 

答案:
解析:

Ð3=180°-Ð1=180°-105°=75°,Ð4=180°-Ð2=180°-140°=40°

Ða=180°-75°-40°=65°

另解:∵ mn    Ð5=180°-Ð1=75°

Ða=Ð2-Ð5=65°

 


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•沈阳)已知,如图,在平面直角坐标系中,点A坐标为(-2,0),点B坐标为(0,2),点E为线段AB上的动点(点E不与点A,B重合),以E为顶点作∠OET=45°,射线ET交线段0B于点F,C为y轴正半轴上一点,且OC=AB,抛物线y=-
2
x2+mx+n的图象经过A,C两点.
(1)求此抛物线的函数表达式;
(2)求证:∠BEF=∠AOE;
(3)当△EOF为等腰三角形时,求此时点E的坐标;
(4)在(3)的条件下,当直线EF交x轴于点D,P为(1)中抛物线上一动点,直线PE交x轴于点G,在直线EF上方的抛物线上是否存在一点P,使得△EPF的面积是△EDG面积的(2
2
+1)倍?若存在,请直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,二次函数y=ax2+bx-8(a≠0)的图象与x轴交于点A(-2,0),B(4,0)两点,与y轴交于点C,T为抛物线的顶点.
(1)在x轴下方的抛物线上有一点D,以A,C,D,B四点为顶点的四边形ACDB是等腰梯形,请直接写出D点的坐标;
(2)过点B作两条互相垂直的直线l1,l2,在抛物线的对称轴上是否存在点P,使得以点P为圆心的圆过原点,且与直线l1,l2都相切?如果存在,求出点P的坐标;如果不存在,请说明理由;
(3)直线CT交x轴于点E,点F(m,n)是射线ET上的一个动点,将抛物线沿其对称轴向下平移2个单位长度,若平移后的抛物线与线段EF只有一个公共点,试分别计算实数m,n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图,D是△ABC的AB边上一点,E在AB的延长线上.
(1)作射线ET,使∠AET=∠CAB(保留作图痕迹,不写作法)
(2)在射线ET上取一点F,使EF=AC,连接DF,试证明当AD=EB时,BC=DF.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,D是AB边上一点,E是AB延长线上的点,EB=AD.
(1)在直线AB的上方作射线ET,使∠AET=∠CAB(保留作图痕迹,不写作法与证明);
(2)在射线ET上取一点F,使EF=AC,连接DF,求证:BC=DF.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2-2ax+c与y轴交于点C,与x轴交于A、B两点,点A的坐标是(-1,0),O是坐标原点,且OC=3OA.点E为线段BC上的动点(点E不与点B,C重合),以E为顶点作∠OEF=45°,射线ET交线段OB于点F.
(1)求出此抛物线函数表达式,并直接写出直线BC的解析式;
(2)求证:∠BEF=∠COE;
(3)当△EOF为等腰三角形时,求此时点E的坐标;
(4)点P为抛物线的对称轴与直线BC的交点,点M在x轴上,点N在抛物线上,是否存在以点A、M、N、P为顶点的平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案