精英家教网 > 初中数学 > 题目详情
已知:如图,⊙P与x轴相切于坐标原点O,点A(0,2)是⊙P与y轴的交点,点B(-2,0)在x轴上.连接BP交⊙P于点C,连接AC并延长交x轴于点D.
(1)求线段BC的长;
(2)求直线AC的关系式;
(3)当点B在x轴上移动时,是否存在点B,使△BOP相似于△AOD?若存在,求出符合条件的点B的坐标;若不存在,请说明理由.

【答案】分析:(1)方法一:在直角三角形BOP中,根据勾股定理列方程求解;
方法二:延长BP交⊙P于G,根据切割线定理进行计算.
(2)要求直线AC的解析式,关键是求得点C的坐标.过点C作CE⊥x轴于E,CF⊥y轴于F,根据平行线分线段成比例定理求得CE、CF的长,再根据点C所在的象限写出它的坐标,从而根据待定系数法写出直线的解析式.
(3)要使△BOP相似于△AOD,因为∠OPB>∠OAD,所以∠OBP=∠OAD,结合圆周角定理,得∠OPB=2∠OBP,从而求得∠OBP=30°,则OB=cot30°•OP=,即可写出点B的坐标,再根据对称性可以写出点B的另一种情况.
解答:解:(1)
法一:由题意,得OP=1,BO=2,CP=1.
在Rt△BOP中
∵BP2=OP2+BO2
∴(BC+1)2=12+(22
∴BC=2.
法二:延长BP交⊙P于G,如图所示,由题意,得OB=2,CG=2,
∵OB2=BC•BG,
∴(22=BC•(BC+2),
BC=2.

(2)如图所示,过点C作CE⊥x轴于E,CF⊥y轴于F.
在△PBO中,
∵CF∥BO,


解得CF=
同理可求得CE=
因此C(-).
设直线AC的函数关系式为y=kx+b(k≠0).
把A(0,2),C(-)两点代入关系式,得

解得
∴所求函数关系式为y=x+2.

(3)如图所示,在x轴上存在点B,使△BOP与△AOD相似.
∵∠OPB>∠OAD,
∴∠OPB≠∠OAD.
故若要△BOP与△AOD相似,
则∠OBP=∠OAD.
又∠OPB=2∠OAD,
∴∠OPB=2∠OBP.
∵∠OPB+∠OBP=90°,
∴3∠OBP=90°,
∴∠OBP=30°.
因此OB=cot30°•OP=
∴B1点坐标为(-,0).
根据对称性可求得符合条件的B2坐标(,0).
综上,符合条件的B点坐标有两个:
B1(-,0),B2,0).
点评:此题综合运用了勾股定理、切割线定理、圆周角定理、平行线分线段成比例定理以及相似三角形的判定方法.要求能够熟练运用待定系数法求得函数的解析式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、已知:如图,⊙O1与⊙O2相交于A、B两点,过A的直线交⊙O1于C,交⊙O2于D,过B的直线交⊙O1于E,交⊙O2于F,且CD∥EF.
求证:CE=DF.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,⊙O1与⊙O2相交于点A和点B,AC∥O1O2,交⊙O1于点C,⊙O1的半径为5精英家教网,⊙O2的半径为
13
,AB=6.
求:(1)弦AC的长度;
(2)四边形ACO1O2的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、已知:如图,⊙O1与⊙O2外切于点P,⊙O1的半径为3,且O1O2=8,则⊙O2的半径R=
5

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•南京)已知:如图,⊙O1与⊙O2外切于点P,A为⊙O1上一点,直线AC切⊙O2于点C,且交⊙O1于点B,AP的延长线交⊙O2于点D.
(1)求证:∠BPC=∠CPD;
(2)若⊙O1半径是⊙O2半径的2倍,PD=10,AB=7
6
,求PC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,⊙O1与⊙O2相交于A,B两点.求证:直线O1O2垂直平分AB.

查看答案和解析>>

同步练习册答案