精英家教网 > 初中数学 > 题目详情

【题目】阅读下列材料解决问题:两个多位数整数,若它们各数位上的数字之和相等,则称这两个多位数互为“调和数”,例如3782,它们各数位上的数字之和分别为3+78+2,显然3+78+2103782互为“调和数”.

1)下列说法错误的是   

A.12351互为调和数” ; B.345513互为“调和数; C.20188120互为“调和数”; D.两位数互为“调和数”

2)若AB是两个不等的两位数,ABAB互为“调和数”,且AB之和是BA之差的3倍,求证:y=-x+9.

【答案】1B;(2)见解析.

【解析】

1)根据题意,两个多位数整数,若它们各数位上的数字之和相等,则称这两个多位数互为“调和数”,即可作答

2)先用“调和数”,得出x+y=m+n,再利用AB之和是BA之差的3倍,得出x+y=9(m-2x),则x+y9的倍数;得出结论成立.

解:(1)根据调和数的定义,通过计算各位数之和,易知B选项错误

故选择:B

2)证明:有题意可知:

所以x+y=9(m-2x),则x+y9的倍数;

所以x+y=918

所以y=-x+9.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下表是某中学七年级5名学生的体重情况:

姓名

小颖

小明

小刚

小京

小宁

体重(千克)

34

45

体重与平均体重的差

-6

+3

-4

0

1)完成上表.

2)谁最重?谁最轻?

3)最重的与最轻的相差多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在今年“绿色清明,文明祭祀”活动中,某花店用元购进若干菊花,很快售完,接着又用元购进第二批菊花,已知第二批所购进菊花的数量是第一批所购进菊花数量的倍,且每朵菊花的进价比第一批每朵菊花的进价多元.

1)求第一批每朵瓶菊花的进价是多少元?

2)若第一批每朵菊花按元售价销售,要使总利润不低于元(不考虑其他因素),第二批每朵菊花的售价至少是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,圆柱形玻璃杯,高为,底面周长为,在杯内离杯底的点处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿与蜂蜜相对的点处,则蚂蚁到达蜂蜜的最短距离为( ).

A. 15B. C. 12D. 18

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°CDAB垂足为DAE平分∠CABCD于点F,交BC于点EEHAB,垂足为H,连接FH

(1)求证:CF=CE

(2)试判断四边形CFHE的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y2x+6x轴于A,交y轴于B

1)直接写出A      ),B      );

2)如图1,点E为直线yx+2上一点,点F为直线yx上一点,若以ABEF为顶点的四边形是平行四边形,求点EF的坐标

3)如图2,点Cmn)为线段AB上一动点,D(﹣7m0)在x轴上,连接CD,点MCD的中点,求点M的纵坐标y和横坐标x之间的函数关系式,并直接写出在点C移动过程中点M的运动路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某服装厂生产一种夹克和T恤,夹克每件定价120元,T恤每件定价60元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一件夹克送一件T恤;②夹克和T恤都按定价的80%付款.现某客户要到该服装厂购买夹克30件,T件(30).

1)若该客户按方案①购买,需付款    元(用含x的代数式表示);

若该客户按方案②购买,需付款    元(用含x的代数式表示);

2)若=40,通过计算说明按方案①、方案②哪种方案购买较为合算?

3)若两种优惠方案可同时使用,当=40时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两个超市以同样的价格出售同样的商品,但各自推出不同的优惠方案:在甲超市累计购物超过100元后,超过100元的部分按80%收费;在乙超市累计购物超过50元后,超过50元的部分按90%收费.设小明在同一超市累计购物元,他在甲超市购物实际付费().在乙超市购物实际付费().

(1)分别求出的函数关系式.

(2)随着小明累计购物金额的变化,分析他在哪家超市购物更合算.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人相约周末沿同一条路线登山,甲、乙两人距地面的高度y(米)与登山时间x(分钟)之间的函数图象如图所示,根据图象所提供的信息解答下列问题

1)甲登山的速度是每分钟  米;乙在A地提速时,甲距地面的高度为  米;

2)若乙提速后,乙的速度是甲登山速度的3倍;

求乙登山全过程中,登山时距地面的高度y(米)与登山时间x(分钟)之间的函数解析式;

乙计划在他提速后5分钟内追上甲,请判断乙的计划能实现吗?并说明理由;

3)当x为多少时,甲、乙两人距地面的高度差为80米?

查看答案和解析>>

同步练习册答案