【题目】如图,菱形ABCD的边长为24厘米,∠A=60°,点P从点A出发沿线路AB→BD作匀速运动,点Q从点D同时出发沿线路DC→CB→BA作匀速运动.
(1)求BD的长;
(2)已知点P、Q运动的速度分别为4厘米/秒,5厘米/秒,经过12秒后,P、Q分别到达M、N两点,若按角的大小进行分类,请你确定△AMN是哪一类三角形,并说明理由;
(3)设(2)中的点P、Q分别从M、N同时沿原路返回,点P的速度不变,点Q的速度改变为a厘米/秒,经过3秒后,P、Q分别到达E、F两点,若△BEF与(2)中的△AMN相似,试求a的值.
【答案】(1)BD=24(2)△AMN是直角三角形(3)2或6或12
【解析】试题分析:(1)根据菱形的性质证△ABD是等边三角形即可;
(2)求出P Q走的距离,再根据等腰三角形性质即可推出答案;
(3)分为三种情况:根据相似,得到比例式,求出Q走的距离,即可求出答案.
试题解析:(1)∵菱形ABCD,
∴AB=AD,
∵∠A=60°,
∴△ABD是等边三角形,
∴BD=AB=24厘米.
答:BD=24厘米.
(2)12秒时,P走了4×12=48,
∵AB+BD=24+24=48,
∴P到D点,
同理Q到AB的中点上,
∵AD=BD,
∴MN⊥AB,
∴△AMN是直角三角形.
(3)有三种情况:如图(2)
∠ANM=∠EFB=90°,∠A=∠DBF=60°,DE=3×4=12=AD,
根据相似三角形性质得:BF=AN=6,
∴NB+BF=12+6=18,
∴a=18÷3=6,
同理:如图(1)求出a=2;
如图(3)a=12.
∴a的值是2或6或12.
科目:初中数学 来源: 题型:
【题目】如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=98°,则∠C的度数为( )
A.40°
B.41°
C.42°
D.43°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲种蔬菜比乙种蔬菜单价少5角,张阿姨买了2斤甲蔬菜和3斤乙蔬菜,一共花了20元,如果设甲种蔬菜的单价为x元/斤,那么下列方程正确的是( )
A. 2x+3(x+5)=20 B. 2x+3(x+0.5)=20 C. 2x+3(x-0.5)=20 D. 2x+3(x-5)=20
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线AB∥CD,直线l与直线AB,CD相交于点E,F,点P是射线EA上的一个动点(不包括端点E),将△EPF沿PF折叠,使顶点E落在点Q处.
(1)若∠PEF=48°,点F恰好落在其中的一条平行线上,请直接写出∠EFP的度数.
(2)若∠PEF=75°,∠CFQ= ∠PFC,求∠EFP的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题4分)把下列各数分别填入相应的集合内:
-2.5,0,-0.5252252225…(每两个5之间依次增加1个2),100%,-(-2),,
(1)正数集合:{ …};
(2)负分数集合:{ …};
(3)整数集合:{ …};
(4)无理数集合:{ …}.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0).C(0,3),点M是抛物线的顶点.
(1)求二次函数的关系式;
(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD=m,△PCD的面积为S,试判断S有最大值或最小值?并说明理由;
(3)在MB上是否存在点P,使△PCD为直角三角形?如果存在,请求出点P的坐标;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com