【题目】如图,在数轴上点表示数,点表示数,满足.
(1)点表示的数为 ;点表示的数为 ;
(2)甲球从点处以1个单位长度/秒的速度向左运动;同时乙球从点处以2个单位/秒的速度也向左运动,设运动的时间为(秒),
①当时,甲球到原点的距离为 单位长度;乙球到原点的距离为 单位长度;当时,甲球到原点的距离为 单位长度;乙球到原点的距离为 单位长度;
②试探究:在运动过程中,甲、乙两球到原点的距离可能相等吗?若不能,请说明理由,若能,求出甲、乙两球到原点的距离相等时的运动时间.
【答案】(1);4(2)①2;2;4;2②能;或
【解析】
(1)利用绝对值的非负性即可确定出a,b即可;
(2)①根据运动确定出运动的单位数,即可得出结论.
②根据题意得到甲:,乙:,由甲、乙两球到原点的距离
得,解方程即可求解.
(1)∵;
∴a=1,b=4,
∴点A表示的数为1,点B表示的数为4,
故答案为;4;
(2)∵甲球从点处以1个单位长度/秒的速度向左运动;同时乙球从点处以2个单位/秒的速度也向左运动,
∴①当时,甲球表示的数为2,乙球表示的数为2
∴甲球到原点的距离为2单位长度;乙球到原点的距离为2单位长度;
当时,甲球表示的数为4,乙球表示的数为-2
甲球到原点的距离为4单位长度;乙球到原点的距离为2单位长度;
故答案为2;2;4;2;
②能相等,依题意得甲表示的数为:,乙表示的数为:.
∵甲、乙两球到原点的距离可能相等
∴
或
解得或.
科目:初中数学 来源: 题型:
【题目】如图,已知的三个顶点的坐标分别为、、.
(1)请直接写出点关于原点对称的点的坐标;
(2)将绕坐标原点逆时针旋转得到,画出,直接写出点、的对应点的点、坐标;
(3)请直接写出:以、、为顶点的平行四边形的第四个顶点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠ACB=90°,BC=5,AC=12,I是Rt△ABC的内心,连接CI,AI,则△CIA外接圆的半径为()
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线与x轴交于A,B两点(点A在点B的左边),与y轴正半轴交于点C.
(1)如图1,若A(-1,0),B(3,0),
① 求抛物线的解析式;
② P为抛物线上一点,连接AC,PC,若∠PCO=3∠ACO,求点P的横坐标;
(2)如图2,D为x轴下方抛物线上一点,连DA,DB,若∠BDA+2∠BAD=90°,求点D的纵坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某建筑物AC顶部有一旗杆AB,且点A,B,C在同一条直线上,小明在地面D处观测旗杆顶端B的仰角为30°,然后他正对建筑物的方向前进了20米到达地面的E处,又测得旗杆顶端B的仰角为60°,已知建筑物的高度AC=12m,求旗杆AB的高度(结果精确到0.1米).参考数据:≈1.73,≈1.41.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1是边长为的正方形薄铁片,小明将其四角各剪去一个相同的小正方形(图中阴影部分)后,发现剩余的部分能折成一个无盖的长方体盒子,图2为盒子的示意图(铁片的厚度忽略不计).
(1)设剪去的小正方形的边长为,折成的长方体盒子的容积为,直接写出用只含字母的式子表示这个盒子的高为______,底面积为______,盒子的容积为______,
(2)为探究盒子的体积与剪去的小正方形的边长之间的关系,小明列表
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
324 | 588 | 576 | 500 | 252 | 128 |
填空:①______,______;
②由表格中的数据观察可知当的值逐渐增大时,的值______.(从“逐渐增大”,“逐渐减小”“先增大后减小”,“先减小后增大”中选一个进行填空)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,∠BAC=90°,点D,E分别在AB,BC上,∠EAD=∠EDA,点F为DE的延长线与AC的延长线的交点.
(1)求证:DE=EF;
(2)判断BD和CF的数量关系,并说明理由;
(3)若AB=3,AE=,求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,阶梯图的每个台阶上都标着一个数, 从下到上的第个至第个台阶上依次标着,且任意相邻四个台阶上的数的和都相等.
求前个台阶上的数的和;
求第个台阶上的数x的值;
从下到上前为奇数)个台阶上的数的和能否为?若能,求出的值;若不能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com