精英家教网 > 初中数学 > 题目详情
10.如图,将一副三角板如图放置,若AE∥BC,则∠FAD=(  )
A.25°B.20°C.15°D.10°

分析 根据平行线的性质,得出∠EAC=∠C=30°,再根据∠DAE=45°,即可得到∠DAF=45°-30°=15°.

解答 解:∵AE∥BC,
∴∠EAC=∠C=30°,
∵∠DAE=45°,
∴∠DAF=45°-30°=15°,
故选:C.

点评 本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC、AC.
(1)求证:AC平分∠DAO.
(2)若∠DAO=105°,∠E=30°
①求∠OCE的度数;
②若⊙O的半径为2$\sqrt{2}$,求线段EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知,FH是⊙O的直径,弦AB⊥FH于G,过AB的延长线上一点C作⊙O的切线交HF于E,切点为点D,连接AF、AD.
(1)求证:∠DAF=$\frac{1}{2}$∠C;
(2)若AB=6,GH=$\frac{3}{2}$,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如果关于x的方程mx+2=m+x无解,则m的值是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线与AB的延长线交于点P.
(1)求证:∠BCP=∠CAP;
(2)若PB=$\sqrt{3}$,PC=2$\sqrt{6}$,求⊙O的半径;
(3)在(2)的条件下,若CM平分∠BCA,CM交⊙O于点M,交AB于点N,求MC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.已知x=1是方程x2+mx+n=0的一个根,则代数式m2+2mn+n2的值为(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.
(1)如图①,当点Q在线段AC上,且AP=AQ时,△BPE和△CQE的形状有什么关系,请证明;
(2)如图②,当点Q在线段CA的延长线上时,△BPE和△CQE有什么关系,说明理由;
(3)当BP=1,CQ=$\frac{9}{2}$时,求P、Q两点间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,在平面直角坐标系中,点A在抛物线y=x2-2x+3上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,-3)
(1)求抛物线的解析式;
(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标
(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案