【题目】如图,在平面直角坐标系xOy中,函数()的图象经过点,AB⊥x轴于点B,点C与点A关于原点O对称, CD⊥x轴于点D,△ABD的面积为8.
(1)求m,n的值;
(2)若直线(k≠0)经过点C,且与x轴,y轴的交点分别为点E,F,当时,求点F的坐标.
【答案】(1)m=8,n=-2;(2) 点F的坐标为,
【解析】(1)利用三角形的面积公式构建方程求出n,再利用 待定系数法求出m的的值即可;(2)分两种情形分别求解如①图,当k<0时,设直线y=kx+b与x轴,y轴的交点分别为, . ②图中,当k>0时,设直线y=kx+b与x轴,y轴的交点分别为点,.
(1)如图②
∵ 点A的坐标为,点C与点A关于原点O对称,
∴ 点C的坐标为.
∵ AB⊥x轴于点B,CD⊥x轴于点D,
∴ B,D两点的坐标分别为,.
∵ △ABD的面积为8,,
∴ .
解得 . ∵ 函数()的图象经过点,
∴ .
(2)由(1)得点C的坐标为.
① 如图,当时,设直线与x轴,
y轴的交点分别为点,.
由 CD⊥x轴于点D可得CD∥.
∴ △CD∽△ O.
∴ .
∵ ,
∴ .
∴ .
∴ 点的坐标为.
②如图,当时,设直线与x轴,y轴的交点分别为
点,.
同理可得CD∥,.
∵ ,
∴ 为线段的中点,.
∴ .
∴ 点的坐标为.
综上所述,点F的坐标为,.
科目:初中数学 来源: 题型:
【题目】已知甲、乙两地相距160km,、两车分别从甲、乙两地同时出发,车速度为85km/h,车速度为65km/h.
(1)、两车同时同向而行,车在后,经过几小时车追上车?
(2)、两车同时相向而行,经过几小时两车相距20km?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知长方形ABCD中,AD=6cm,AB=4cm,点E为AD的中点.若点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BC上由点B向点C运动.
(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△AEP与△BPQ是否全等,请说明理由,并判断此时线段PE和线段PQ的位置关系;
(2)若点Q的运动速度与点P的运动速度相等,运动时间为t秒,设△PEQ的面积为Scm2,请用t的代数式表示S;
(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△AEP与△BPQ全等?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若抛物线上,它与轴交于,与轴交于、,是抛物线上、之间的一点,
(1)当时,求抛物线的方程,并求出当面积最大时的的横坐标。
(2)当时,求抛物线的方程及的坐标,并求当面积最大时的横坐标。
(3)根据(1)、(2)推断的横坐标与的横坐标有何关系?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某港口P位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后,分别位于点Q、R处,且相距30海里,如果知道“远航”号沿北偏东方向航行,请求出“海天”号的航行方向?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C是圆上一点,弦CD⊥AB于点E,且DC=AD.过点A作⊙O的切线,过点C作DA的平行线,两直线交于点F,FC的延长线交AB的延长线于点G.
(1)求证:FG与⊙O相切;
(2)连接EF,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在等边三角形ABC中,CD为中线,点Q在线段CD上运动,将线段QA绕点Q顺时针旋转,使得点A的对应点E落在射线BC上,连接BQ,设∠DAQ=α
(0°<α<60°且α≠30°).
(1)当0°<α<30°时,
①在图1中依题意画出图形,并求∠BQE(用含α的式子表示);
②探究线段CE,AC,CQ之间的数量关系,并加以证明;
(2)当30°<α<60°时,直接写出线段CE,AC,CQ之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com