【题目】在平面直角坐标系中,抛物线与轴相交于、,交轴于点,点抛物线的顶点,对称轴与轴交于点.
⑴.求抛物线的解析式;
⑵.如图1,连接,点是线段上方抛物线上的一动点,于点;过点作轴于点,交于点.点是轴上一动点,当 取最大值时.
①.求的最小值;
②.如图2,点是轴上一动点,请直接写出的最小值.
【答案】(1);(2)①;②
【解析】
(1)直接利用待定系数法,把A,B两点代入解析式即可求出.
(2)利用配方法求出M点,求出直线AM的解析式,从而可以得出经过点E且与直线AM平行的直线 解析式,再根据当直线与抛物线只有一个交点时,EF取最大值,利用根的判别式可求出E点和D点的坐标,再根据当P,B,D三点共线时,PD+PC有最小值,利用勾股定理即可求出.
(3)利用添加辅助线,对线段OQ进行转化,再根据三点共线求出最小值.
1)将A(-3,0)、B(1,0)代入二次函数得,
解之得,∴二次函数的解析式为;
(2)①将二次函数配方得,
∴M(-1,4)
设直线AM的解析式为,将代入直线可得,
解得,
∴直线AM的解析式为,
过E作直线,平行于直线AM,且解析式为,
∵E在直线AM上方的抛物线上,
∴;
当直线与AM距离最大时,EF取得最大值,
∴当与抛物线只有一个交点时,EF取得最大值,
将直线的解析式代入抛物线得,
由题意可得,△=,经计算得,将代入二次方程可得,
,
∴,即E点的横坐标为-2,将代入抛物线得,
∴,
又∵⊥轴,
∴,将代入直线AM,
∴,
∵,
∴B、C两点关于轴对称,
∴,
∴,当P、B、D三点不共线时,
当P、B、D三点共线时,,
∴当P、B、D三点共线时PC+PD取得最小值,
在Rt△BHD中。DH=2,BH=3,∴BD=,
∴的最小值为;
②过Q作直线平行于轴,并在轴右侧该直线上取一点G,使得,
QG=,
∴,当三点共线时,
DQ+QG取得最小值,设Q(0,y),则,
∵QG∥轴,
∴,
∴,
∴的最小值为.
【点晴】
本题主要考查了二次函数综合应用,利用待定系数求解析式,根的判别式求点的坐标,利用三点共线求最值的问题.
科目:初中数学 来源: 题型:
【题目】如图,△OAC和△BAD都是等腰直角三角形,,反比例函数在第一象限的图象经过点B,则S△OAC-S△BAD=( )
A.1.5B.2.5C.3D.1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,P是对角线BD上的一点,过点C作CQ∥DB,且CQ=DP,连接AP、BQ、PQ.
(1)求证:△APD≌△BQC;
(2)若∠ABP+∠BQC=180°,求证:四边形ABQP为菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角是50度时,箱盖落在的位置(如图2),已知
(1)求点到的距离;(结果保留整数)
(2)求两点之间的距离.(结果保留整数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, 直线与轴交于点,与双曲线 在第三象限交于两点,且 ;下列等边三角形,,,……的边,,,……在轴上,顶点……在该双曲线第一象限的分支上,则= ____,前25个等边三角形的周长之和为 _______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料解答下列问题
观察下列方程:①,②,③……
⑴按此规律写出关于x的第n个方程为____________________,此方程的解为____________.
⑵根据上述结论,求出的解.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着“微信运动”被越来越多的人关注和喜爱,某数学兴趣小组随机调查了我区50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):
步数 | 频数 | 频率 |
0≤x<4000 | 8 | 0.16 |
4000≤x<8000 | 15 | 0.3 |
8000≤x<12000 | 12 | a |
12000≤x<16000 | b | 0.2 |
16000≤x<20000 | 3 | 0.06 |
20000≤x<24000 | 2 | 0.04 |
请根据以上信息,解答下列问题:
(1)写出a,b的值并补全频数分布直方图;
(2)我市约有5000名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?
(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步)的两名教师与大家分享心得,用树形图或列表法求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】据调查:超速行驶是引发交通事故的主要原因之一.小明用所学知识对一条笔直公路上车辆进行测速,如图所示,观测点C到公路的距离CD=200m,检测路段的起点A位于点C的南偏东60°方向上,终点B位于点C的南偏东45°方向上,一辆轿车由东向西匀速行驶,测得此车由A处行驶到B处时的时间为10s,问此车是否超过了该路段10m/s的限制速度?(观测点C离地面的距离忽略不计,参专数据:1.41,1.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O在的边上,以为半径作,的平分线交于点D,过点D作于点E.
(1)尺规作图(不写作法,保留作图痕迹),补全图形;
(2)判断与交点的个数,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com