精英家教网 > 初中数学 > 题目详情
(2013•衢州)如图,已知AB是⊙O的直径,BC⊥AB,连结OC,弦AD∥OC,直线CD交BA的延长线于点E.
(1)求证:直线CD是⊙O的切线;
(2)若DE=2BC,求AD:OC的值.
分析:(1)首选连接OD,易证得△COD≌△COB(SAS),然后由全等三角形的对应角相等,求得∠CDO=90°,即可证得直线CD是⊙O的切线;
(2)由△COD≌△COB.可得CD=CB,即可得DE=2CD,易证得△EDA∽△ECO,然后由相似三角形的对应边成比例,求得AD:OC的值.
解答:(1)证明:连结DO.
∵AD∥OC,
∴∠DAO=∠COB,∠ADO=∠COD.…(1分)
又∵OA=OD,
∴∠DAO=∠ADO,
∴∠COD=∠COB.…(2分)
在△COD和△COB中,
CO=CO
∠COD=∠COB
OD=OB

∴△COD≌△COB(SAS)…(3分)
∴∠CDO=∠CBO=90°.
又∵点D在⊙O上,
∴CD是⊙O的切线.…(4分)

(2)解:∵△COD≌△COB.
∴CD=CB.…(5分)
∵DE=2BC,
∴ED=2CD.                        …(6分)
∵AD∥OC,
∴△EDA∽△ECO.…(7分)
AD
OC
=
DE
CE
=
2
3
.…(8分)
点评:此题考查了切线的判定、全等三角形的判定与性质以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•衢州)如图,正方形ABCD的边长为4,P为正方形边上一动点,沿A→D→C→B→A 的路径匀速移动,设P点经过的路径长为x,△APD的面积是y,则下列图象能大致反映y与x的函数关系的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•衢州)如图,将一块三角板和半圆形量角器按图中方式叠放,三角板一边与量角器的零刻度线所在直线重合,重叠部分的量角器弧(
AB
)对应的圆心角(∠AOB)为120°,OC的长为2cm,则三角板和量角器重叠部分的面积为
16π
3
+2
3
(cm2
16π
3
+2
3
(cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•衢州)如图,在菱形ABCD中,边长为10,∠A=60°.顺次连结菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边
形A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律继续下去….则四边形A2B2C2D2的周长是
20
20
;四边形A2013B2013C2013D2013的周长是
5+5
3
21005
5+5
3
21005

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•衢州)如图,函数y1=-x+4的图象与函数y2=
k2x
(x>0)的图象交于A(a,1)、B(1,b)两点.
(1)求函数y2的表达式;
(2)观察图象,比较当x>0时,y1与y2的大小.

查看答案和解析>>

同步练习册答案