精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,A,B两点的坐标分别是(0,4),(0,﹣4),点Cx轴上一个动点,过点B作直线BH⊥AC于点H,过点CCD∥y轴,交BH于点D,点Cx轴上运动的过程中,点D不可能经过的点是(  )

A. (2,﹣3) B. (1,﹣3) C. (4,0) D. (0,﹣4)

【答案】B

【解析】

利用特殊值法解决问题即可;

解:当点C坐标为(2,0)时,直线AC的解析式为y=﹣2x+4,直线BC的解析式为

CDy轴,

D(2,﹣3),

当点C的坐标为(4,0)时,点D与点C重合,D(4,0),

当点C的坐标为(0,0)时,点D与点B重合中,D(0,﹣4),

∴点D的坐标可以为(2,﹣3),(4,0)(0,﹣4),

故选:B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(给出定义)

若四边形的一条对角线能将四边形分割成两个相似的直角三角形,那么我们将这种四边形叫做“跳跃四边形”,这条对角线叫做“跳跃线”.

(理解概念)

(1)命题“凡是矩形都是跳跃四边形”是什么命题(“真”或“假”).

(2)四边形ABCD为“跳跃四边形”,且对角线AC为“跳跃线”,其中AC⊥CB,∠B=30°,AB=4,求四边形ABCD的周长.

(实际应用)已知抛物线y=ax2+m(a≠0)与x轴交于B(﹣2,0),C两点,与直线y=2x+b交于A,B两点.

(3)直接写出C点坐标,并求出抛物线的解析式.

(4)在线段AB上有一个点P,在射线BC上有一个点Q,P,Q两点分别以个单位/秒,5个单位/秒的速度同时从B出发,沿BA,BC方向运动,设运动时间为t,当其中一个点停止运动时,另一个点也随之停止运动.在第一象限的抛物线上是否存在点M,使得四边形BQMP是以PQ为“跳跃线”的“跳跃四边形”,若存在,请直接写出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.

已知是比例三角形,,请直接写出所有满足条件的AC的长;

如图1,在四边形ABCD中,,对角线BD平分求证:是比例三角形.

如图2,在的条件下,当时,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABAC,∠ABC75°,EBC延长线上一点,∠ABC与∠ACE的平分线相交于点D.则∠D的度数为(  )

A.15°B.17.5°C.20°D.22.5°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元与上网时间x(h)的函数关系如图所示,则下列判断错误的是  

A. 每月上网时间不足25h时,选择A方式最省钱 B. 每月上网费用为60元时,B方式可上网的时间比A方式多

C. 每月上网时间为35h时,选择B方式最省钱 D. 每月上网时间超过70h时,选择C方式最省钱

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B,C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.

(1)求两次传球后,球恰在B手中的概率;

(2)求三次传球后,球恰在A手中的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线x轴交于AB两点,与y轴交于C点,抛物线的顶点为D点,点A的坐标为(﹣10).

1)求D点的坐标;

2)如图1,连接ACBD并延长交于点E,求∠E的度数;

3)如图2,已知点P﹣40),点Qx轴下方的抛物线上,直线PQ交线段AC于点M,当∠PMA=∠E时,求点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,ABC是等边三角形,AE=CD,BQADQ,BEAD于点P,下列说法:①∠APE=C,AQ=BQ,BP=2PQ,AE+BD=AB,其中正确的个数有( )个。

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知像这样由7个全等的正六边形组成的图形叫做二环蜂窝,每个正六边形的顶点叫做格点,顶点都在格点上的三角形叫做格点三角形.已知△ABC为该二环蜂窝一个格点三角形,则在该二环蜂窝中,以点A为顶点且与△ABC相似(包括全等但不与△ABC重合)的格点三角形最多能作的个数为(  )

A. 18 B. 23 C. 25 D. 28

查看答案和解析>>

同步练习册答案