精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,B=D=90°A=60°AB=4CD=2.求:四边形ABCD的面积.

【答案】6

【解析】

试题分析:延长ADBC,交于点E,在直角三角形ABE中,利用30度角所对的直角边得到AE=2AB,再利用勾股定理求出BE的长,在直角三角形DCE中,同理求出DE的长,四边形ABCD面积=三角形ABE面积三角形DCE面积,求出即可.

解:延长ADBC,交于点E

RtABE中,A=60°AB=4

∴∠E=30°AE=2AB=8

BE==4

RtDCE中,E=30°CD=2

CE=2CD=4,根据勾股定理得:DE==2

S四边形ABCD=SABE﹣SDCE=ABBE﹣DCED=8﹣2=6

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】 如图,在等边ABC中,D是边AC上一点,连接BD,将BCD绕点B逆时针旋转60°,得到BAE,连接ED,若BC=5,BD=4.则下列结论错误的是( ).

A.AEBC B. ADE=BDC

C.BDE是等边三角形 D. ADE的周长是9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C两点,交AB于点E,过点E作⊙O的切线交AC于点F.延长CO交AB于点G,作ED∥AC交CG于点D

(1)求证:四边形CDEF是平行四边形;
(2)若BC=3,tan∠DEF=2,求BG的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为(
A.5πcm2
B.10πcm2
C.15πcm2
D.20πcm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平行四边形ABCD中,∠BAD的平分线交线段BC于点E,交线段DC的延长线于点F,以ECCF为邻边作平行四边形ECFG

(1)如图1,证明平行四边形ECFG为菱形;

(2)如图2,若∠ABC=90°,MEF的中点,求∠BDM的度数;

(3)如图3,若∠ABC=120°,请直接写出∠BDG的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与实践
背景阅读 早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形,例如:三边长分别为9,12,15或3 ,4 ,5 的三角形就是(3,4,5)型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.
实践操作 如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.
第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.
第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.
第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.

(1)请在图2中证明四边形AEFD是正方形.
(2)请在图4中判断NF与ND′的数量关系,并加以证明;
(3)请在图4中证明△AEN(3,4,5)型三角形;
(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】水果市场将120吨水果运往各地商家,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)

车型

汽车运载量(吨/辆)

5

8

10

汽车运费(元/辆)

400

500

600

(1)若全部水果都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?

(2)为了节约运费,市场可以调用甲、乙、丙三种车型参与运送(每种车型至少1辆),已知它们的总辆数为16辆,你能通过列方程组的方法分别求出几种车型的辆数吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF.若AB=2,AD=3,则cos∠AEF的值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【探索新知】:如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOBAOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB巧分线

1)一个角的平分线   这个角的巧分线;(填不是

2)如图2,若∠MPN=α,且射线PQ是∠MPN巧分线,则∠MPQ=   ;(用含α的代数式表示出所有可能的结果)

【深入研究】:如图2,若∠MPN=60°,且射线PQ绕点PPN位置开始,以每秒10°的速度逆时针旋转,当PQPN180°时停止旋转,旋转的时间为t秒.

3)当t为何值时,射线PM是∠QPN巧分线

4)若射线PM同时绕点P以每秒的速度逆时针旋转,并与PQ同时停止,请直接写出当射线PQ是∠MPN巧分线t的值.

查看答案和解析>>

同步练习册答案