精英家教网 > 初中数学 > 题目详情
精英家教网在直角坐标系中,正方形A1B1C1O1、A2B2C2C1、…、AnBnCnCn-1按如图所示的方式放置,其中点A1、A2、A3、…、An均在一次函数y=kx+b的图象上,点C1、C2、C3、…、Cn均在x轴上.若点B1的坐标为(1,1),点B2的坐标为(3,2),则点An的坐标为
 
分析:首先求得直线的解析式,分别求得A1,A2,A3…的坐标,可以得到一定的规律,据此即可求解.
解答:解:∵B1的坐标为(1,1),点B2的坐标为(3,2),
∴正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,
∴A1的坐标是(0,1),A2的坐标是:(1,2),
代入y=kx+b得
b=1
k+b=2

解得:
b=1
k=1

则直线的解析式是:y=x+1.
∵A1B1=1,点B2的坐标为(3,2),
∴A1的纵坐标是1,A2的纵坐标是2.
在直线y=x+1中,令x=3,则纵坐标是:3+1=4=22
则A4的横坐标是:1+2+4=7,则A4的纵坐标是:7+1=8=23
据此可以得到An的纵坐标是:2n-1,横坐标是:2n-1-1.
故点An的坐标为 (2n-1-1,2n-1).
故答案是:(2n-1-1,2n-1).
点评:本题主要考查了待定系数法求函数解析式,正确得到点的坐标的规律是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,在直角坐标系中,正方形ABOD的边长为a,O为原点,点B在x轴的负半轴上,点D在y轴的正半轴上,直线OM的解析式为y=2x,直线CN过x轴上的一点C(-
3
5
a
,0)且与OM平行,交AD于点E,现正方形以每秒为
a
10
的速度匀速沿x轴正方向右平行移动,设运动时间为t秒,正方形被夹在直线CE和OF间的部分为S,
(1)求点A、B、D的坐标;
(2)求梯形ECOD的面积;
(3)0≤t<4时,写出S与t的函数关系式.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

在直角坐标系中,正方形ABOD的边长为5,O为原点,点B在x轴的负半轴上,点D在y轴的正半轴上,直线OE的解析式为y=2x,直线CF过x轴上一点C(-3,0)且与OE平行.现正方形以每秒
12
的速度匀速沿x轴的正方向平行移动,设精英家教网运动时间为t秒,正方形被夹在直线OE与CF间的部分的面积为S.
(1)当0≤t<4时,写出S与t的函数关系;
(2)当4≤t≤5时,写出S与t的函数关系,在这个范围内S有无最大值?若有,请求出这个最大值;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在直角坐标系中,O是坐标原点,正方形OABC的顶点A恰好落在双曲线y=
3
x
(x>0)上,且OA与x轴正方向的夹角为30°.则正方形OABC的面积是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•本溪一模)在直角坐标系中,放置一个如图的直角三角形纸片AOB,已知OA=2,∠AOB=30°,D、E两点同时从原点O出发,D点以每秒
3
个单位长度的速度沿y轴正方向运动,E点以每秒1个单位长度的速度沿x轴正方向运动,设D、E两点的运动时间为t秒(t≠0).
(1)在点D、E的运动过程中,直线DE与线段OA垂直吗?请说明理由;
(2)当时间t在什么范围时,直线DE与线段OA有公共点?
(3)若直线DE与直线OA相交于点F,将△OEF沿DE向上折叠,设折叠后△OEF与△AOB重叠部分面积为S,请直接写出S与t的函数关系式,并写出t为何值时,折叠面积最大,最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•恩施州)如图所示,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x轴围成的面积为(  )

查看答案和解析>>

同步练习册答案