【题目】将一副直角三角板如图放置,使GM与AB在同一直线上,其中点M在AB的中点处,MN与AC交于点E,∠BAC=30°,若AC=9cm,则EM的长为( )
A. 2.5cm B. 3cm C. 4cm D. 4.5cm
【答案】B
【解析】
连接CM,因为点M在AB的中点处,所以由直角三角形斜边上的中线等于斜边的一半可得:CM=AM,△ACM是等腰三角形,再过点M作MF⊥AC于点F,因为∠MEF=60°,可得∠EMF=30°,利用三线合一得出CF=FA=AC=4.5cm,设EM=x,则EF=x,EA=EF+FA=x+4.5,
在Rt△AEM中,因为∠MAE=30°,所以ME=AE,即x=(x+4.5),解得x=3.
解:连接CM,过点M作MF⊥AC于点F,
∵点M在AB的中点处,
∴CM=AM=AB,
∵MF⊥AC
∴CF=AF=AC=4.5,
∵∠EAM=30°,
∴∠MEA=60° ∠EMF=30°,
设EM=x,则EF=EM=x,AE=AF+EF=4.5+x
Rt△AME中,∵∠EAM=30°,
∴EM=AE,即x=(4.5+x),解得x=3,即EM=3.
故答案为:3cm,
科目:初中数学 来源: 题型:
【题目】如图,在等边△ABC中,M是AC上一点,N是BC上一点,且AM=BN,∠MBC=25°,AN与BM交于点O,则∠MON的度数为( )
A. 110° B. 105° C. 90° D. 85°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=mx+n与双曲线y= 相交于A(﹣1,2)、B(2,b)两点,与y轴相交于点C.
(1)求m,n的值;
(2)若点D与点C关于x轴对称,求△ABD的面积;
(3)在坐标轴上是否存在异于D点的点P,使得S△PAB=S△DAB?若存在,直接写出P点坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,△ABC中,D、E、F三点分别在AB,AC,BC三边上,过点D的直线与线段EF的交点为点H,∠1+∠2=180°,∠3=∠C.
(1)求证:DE∥BC;
(2)在以上条件下,若△ABC及D,E两点的位置不变,点F在边BC上运动使得∠DEF的大小发生变化,保证点H存在且不与点F重合,探究:要使∠1=∠BFH成立,请说明点F应该满足的位置条件,在图2中画出符合条件的图形并说明理由.
(3)在(2)的条件下,若∠C=α,直接写出∠BFH的大小 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD在平面直角坐标系的位置如图所示,将四边形ABCD先向下平移2个单位,再向左平移3个单位得到四边形A1B1C1D1,解答下列各题:
(1)请在图中画出四边形A1B1C1D1;
(2)请写出四边形A1B1C1D1的顶点B1、D1坐标;
(3)请求出四边形A1B1C1D1的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知在△ABC中,AB=AC,D为线段BC上一点,E为线段AC上一点,且AD=AE.
(1)若∠ABC=60°,∠ADE=70°,求∠BAD与∠CDE的度数;
(2)设∠BAD=α,∠CDE=β,试写出α、β之间的关系并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,B、C、D三点在一条直线上,AC平分∠DCE,且与BE的延长线交于点A。
(1)如果∠A=35°,∠B=30°,求∠BEC的度数;
(2)小明经过改变∠A,∠B的度数进行多次探究,得出A、B、BEC三个角之间存在固定的数量关系,请用一个等式表示出这个关系,并进行证明。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,对称轴平行于y轴的抛物线与x轴交于点A、B,与y轴交于点C,过C作CD∥x轴,与抛物线交于点D.若OA=1,CD=4,则线段AB的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中有两点A(4,0)、B(0,2),如果点C在x轴上(C与A不重合),当点C的坐标为或时,使得由点B、O、C组成的三角形与△AOB相似(至少找出两个满足条件的点的坐标).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com