如图,抛物线交轴于A、B两点(A点在B点左侧),交轴于点C,已知B(8,0),,△ABC的面积为8.
【小题1】求抛物线的解析式;
【小题2】若动直线EF(EF∥轴)从点C开始,以每秒1个长度单位的速度沿轴负方向平移,且交轴、线段BC于E、F两点,动点P同时从点B出发,在线段OB上以每秒2个单位的速度向原点O运动。连结FP,设运动时间秒。当为何值时,的值最大,并求出最大值;
【小题3】在满足(2)的条件下,是否存在的值,使以P、B、F为顶点的三角形与△ABC相似。若存在,试求出的值;若不存在,请说明理由。
【小题1】由题意知 ∠COB = 90°B(8,0) OB="8" 在Rt△OBC中tan∠ABC =
OC= OB×tan∠ABC = 8×="4" ∴C(0,4)
∴AB =" 4 " A(4,0)
把A、B、C三点的坐标带入得解得
所以抛物线的解析式为。
【小题2】C ( 0, 4 ) B ( 8, 0 ) E ( 0, 4-t ) ( t > 0)
OC =" 4 " OB =" 8 " CE =" t " BP="2t " OP ="8-2t "
∵EF // OB∴△CEF~△COB
∴ 则有 得 EF =" 2t"
=
当t=2时有最大值2.
【小题3】存在符合条件的t值,使△PBF与△ABC相似。
C ( 0, 4 ) B ( 8, 0 ) E ( 0, 4-t ) F(2t , 4 - t ) P ( 8-2t , 0 )
( t > 0)
AB =" 4 " BP="2t " BF =
∵ OC =" 4 " OB =" 8" ∴BC =
①当点P与A、F与C对应 则,代入得 解得
②当点P与C、F与A对应 则,代入得 解得(不合题意,舍去)
综上所述:符合条件的和。
解析
科目:初中数学 来源: 题型:
如图,抛物线交轴于A、B两点(A点在B点左侧),交轴于点C,已知B(8,0),,△ABC的面积为8.
(1)求抛物线的解析式;
(2)若动直线EF(EF∥轴)从点C开始,以每秒1个长度单位的速度沿轴负方向平移,且交轴、线段BC于E、F两点,动点P同时从点B出发,在线段OB上以每秒2个单位的速度向原点O运动。连结FP,设运动时间秒。当为何值时,的值最大,并求出最大值;
(3)在满足(2)的条件下,是否存在的值,使以P、B、F为顶点的三角形与△ABC相似。若存在,试求出的值;若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源:2013届湖北省天门市十一校九年级4月联考数学试卷(带解析) 题型:填空题
如图,抛物线交轴于点,交轴于点,在轴上方的抛物线上有两点,它们关于轴对称,点在轴左侧.于点,于点,四边形与四边形的面积分别为6和10,则与的面积之和为 .
查看答案和解析>>
科目:初中数学 来源:2013年江苏省东台市实验中学中考数学模拟试卷(带解析) 题型:解答题
如图,抛物线交轴于A、B两点,交轴于点C,
点P是它的顶点,点A的横坐标是3,点B的横坐标是1.
(1)求、的值;
(2)求直线PC的解析式;
(3)请探究以点A为圆心、直径为5的圆与直线PC的位置关系,并说明理由.
(参考数据,,)
查看答案和解析>>
科目:初中数学 来源:2013-2014学年重庆市初九年级上学期第二次阶段测数学试卷(解析版) 题型:解答题
如图,抛物线交轴于两点(的左侧),交轴于点,顶点为。
(1)求点的坐标;
(2)求四边形的面积;
(3)抛物线上是否存在点,使得,若存在,请求出点的坐标;若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源:2011年安徽省中考压轴题预测试数学卷 题型:选择题
如图,抛物线交轴于A、B两点(A点在B点左侧),交轴于点C,已知B(8,0),,△ABC的面积为8.
1.求抛物线的解析式;
2.若动直线EF(EF∥轴)从点C开始,以每秒1个长度单位的速度沿轴负方向平移,且交轴、线段BC于E、F两点,动点P同时从点B出发,在线段OB上以每秒2个单位的速度向原点O运动。连结FP,设运动时间秒。当为何值时,的值最大,并求出最大值;
3.在满足(2)的条件下,是否存在的值,使以P、B、F为顶点的三角形与△ABC相似。若存在,试求出的值;若不存在,请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com