精英家教网 > 初中数学 > 题目详情
某商场将每件进价为60元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加20件.
(1)求商场经营该商品原来一天可获利润多少元?
(2)设后来该商品每件降价x元,商场一天可获利润y元.
①若商场经营该商品一天要获利润7000元,则每件商品应降价多少元?
②求出y与x之间的函数关系式,并通过画该函数图象的草图,观察其图象的变化趋势,结合题意写出当x取何值时,商场获利润不少于7000元.
(1)若商店经营该商品不降价,则一天可获利润100×(100-60)=4000(元).
答:商场经营该商品原来一天可获利润4000元;

(2)①依题意得:(100-60-x)(100+20x)=7000,
即x2-35x+150=0,
解得:x1=5,x2=30.
经检验:x1=5,x2=30都是方程的解,且符合题意.
答:若商场经营该商品一天要获利润7000元,则每件商品应降价5元或30元;
②依题意得:y=(100-60-x)(100+20x),
即y=-20x2+700x+4000=-20(x-17.5)2+10125.
该函数图象的草图如右图所示:
观察图象可得:当5≤x≤30时,y≥7000,
故当5≤x≤30时,商店所获利润不少于7000元.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知△ABC是边长为4的等边三角形,AB在x轴上,点C在第一象限,AC交y轴于点D,点A的坐标为(-1,0).
(1)求B、C、D三点的坐标;
(2)抛物线y=ax2+bx+c经过B、C、D三点,求它的解析式;
(3)过点D作DEAB交经过B、C、D三点的抛物线于点E,求DE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在直角坐标平面中,O为坐标原点,二次函数y=x2+bx+c的图象与y轴的负半轴相交于点C,与x轴相交于A、B两点(如图),点C的坐标为(0,-3),且BO=CO
(1)求出B点坐标和这个二次函数的解析式;
(2)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

用长为24米的篱笆,一面利用10米的墙,围成一个中间隔有一道篱笆的长方形花园.设花园的宽AB为x米,面积为y米2
(1)求y与x之间的函数关系式
(2)当宽AB为多少是,围成面积最大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,A、B两点的坐标分别为(-3,0)、(0,3),C点在x轴的正半轴上,且到原点的距离为1.点P、Q分别从A、B两点同时出发,以相同的速度分别向x轴、y轴的正方向作匀速直线运动,直线PQ交直线AB于D.
(1)求经过A、B、C三点的抛物线及直线AB解析式;
(2)设AP的长为m,△PBQ的面积为S,求出S关于m的函数关系式.
(3)作PE⊥AB于E,当P、Q运动时,线段DE的长是否改变?若改变请说明理由,若不改变,请求出DE的长;
(4)有一个以AB为边的,且由两个与△AOB全等的三角形拼结而成的平行四边形ABST,试求出T点的坐标(画出图形,直接写出结果,不需求解过程).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在学校田径运动会上,九年级的一名高个子男生抛实心球,已知实心球所经过的路线是某个二次函数图象的一部分,如图所示,如果这个男生的抛球处A点坐标为(0,2),实心球在空中线路的最高点B点的坐标是(6,5).
(1)求这个二次函数解析式;
(2)若抛出13.5米或大于13.5米远为“好成绩”,问该男生在这次抛掷中,能取得“好成绩”吗?试通过计算说明.(
15
≈3.873)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知A点坐标为(6,0),B点坐标为(0,8),⊙A与y轴相切,AB交⊙O于点P,过点P作⊙A的切线交y轴于点C,交x轴于点D.
(1)证明:AD=AB;
(2)求经过A,D,C三点的抛物线的函数关系式;
(3)若点M在第一象限,且在(2)中的抛物线上,求四边形AMCD面积的最大值及此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某企业为了增收节支,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:
销售单价x(元∕件)30405060
每天销售量y(件)500400300200
(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,根据所描出的点猜想y是x的什么函数,并求出函数关系式;
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)
(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,抛物线y=ax2+bx-2与x轴交于点A(-1,0)、B(4,0).点M、N在x轴上,点N在点M右侧,MN=2.以MN为直角边向上作等腰直角三角形CMN,∠CMN=90°.设点M的横坐标为m.
(1)求这条抛物线所对应的函数关系式.
(2)求点C在这条抛物线上时m的值.
(3)将线段CN绕点N逆时针旋转90°后,得到对应线段DN.
①当点D在这条抛物线的对称轴上时,求点D的坐标.
②以DN为直角边作等腰直角三角形DNE,当点E在这条抛物线的对称轴上时,直接写出所有符合条件的m值.
(参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(-
b
2a
4ac-b2
4a
))

查看答案和解析>>

同步练习册答案