分析 过点A作AD⊥x轴于点D,根据等腰直角三角形的性质结合角的计算即可证出△ACD≌△BCO,由此即可得出点A的坐标,再利用反比例函数图象上点的坐标特征即可得出结论.
解答 解:过点A作AD⊥x轴于点D,如图所示.
∵∠ACB=90°,
∴∠ACD+∠CAD=90°,∠ACD+∠BCO=90°,
∴∠CAD=∠BCO.
∵三角形ABC为等腰直角三角形,
∴AC=BC.
在△ACD和△BCO中,$\left\{\begin{array}{l}{∠CAD=∠BCO}\\{∠ADC=∠COB=90°}\\{AC=BC}\end{array}\right.$,
∴△ACD≌△BCO(AAS),
∴AD=CO=2,DC=OB=1,
∴点A(-3,2).
∵反比例函数y=$\frac{k}{x}$的图象过点A,
∴k=-3×2=-6.
故答案为:-6.
点评 本题考查了等腰直角三角形的性质、全等三角形的判定与性质以及反比例函数图象上点的坐标特征,解题的关键是求出点A的坐标.本题属于基础题,难度不大,通过证明两三角形全等找出点A的坐标是关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $\sqrt{6}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 已知a、b、c是三角形的三边长,则a2+b2=c2 | |
B. | 在直角三角形中,两边的平方和等于第三边的平方 | |
C. | 在Rt△ABC中,∠C=90°,a、b、c分别是∠A,∠B,∠C的对边,则a2+b2=c2 | |
D. | 在Rt△ABC中,∠B=90°,a、b、c分别是∠A,∠B,∠C的对边,则a2+b2=c2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com