精英家教网 > 初中数学 > 题目详情
如图,直线AB与⊙O相切于点A,AC,CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为,CD=4,则弦AC的长为   
【答案】分析:首先连接AO并延长,交CD于点E,连接OC,由直线AB与⊙O相切于点A,根据切线的性质,可得AE⊥AB,又由CD∥AB,可得AE⊥CD,然后由垂径定理与勾股定理,求得OE的长,继而求得AC的长.
解答:解:连接AO并延长,交CD于点E,连接OC,
∵直线AB与⊙O相切于点A,
∴EA⊥AB,
∵CD∥AB,
∴AE⊥CD,
∴CE=CD=×4=2,
∵在Rt△OCE中,OE==
∴AE=OA+OE=4,
∴在Rt△ACE中,AC==2
故答案为:2
点评:此题考查了切线的性质、垂径定理、勾股定理以及平行线的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

9、如图,直线AB与⊙O相切于点B,BC是⊙O的直径,AC交⊙O于点D,连接BD,则图中直角三角形有
3
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直线AB与CD相交于点O,OP是∠BOC的平分线,OE⊥AB,OF⊥CD,∠AOD=40°.求:∠POB,∠EOF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线AB与x轴、y轴分别交于点A、B,点A的坐标是(2,0),∠ABO=30°.在坐标平面内,是否存在点P(除点O外),使得△APB与△AOB全等.请写出所有符合条件的点P的坐标
(0,0)或(2,2
3
)或(-1,
3
)或(3,
3
(0,0)或(2,2
3
)或(-1,
3
)或(3,
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线AB与CD相交于O点,∠AOE=∠DOF=90°,OP是∠BOC的平分线,其中∠AOD=40°,则∠EOP的度数为 (  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线AB与直线CD相交于点O,OE⊥AB,垂足为O,若∠AOC=65°,则∠DOE的度数是
25°
25°

查看答案和解析>>

同步练习册答案