精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.

(1)求这个二次函数的解析式;

(2)动点P运动到什么位置时,PBC面积最大,求出此时P点坐标和PBC的最大面积.

【答案】(1)y=x2-3x-4;(2)P点坐标(2,-6)时, PBC的最大面积为8.

【解析】

解析

(1)A,B,C三点的坐标,利用待定系数法可求得抛物线解析式;

(2)PPEx,x轴于点E,交直线BC于点F,P点坐标可表示出PF的长,则可表示出△PBC的面积,利用二次函数的性质可求得△PBC面积的最大值及P点的坐标.

解:(1)设抛物线解析式为y=ax2+bx+c,A,B,C三点坐标代入可得

,计算得出

抛物线解析株式为y= x2-3x-4;

(2)P在抛物线上可设P(t,t2-3t-4),

P PEx轴于点E,交直线BC于点F,如图

B(4,0),C(0,-4),直线BC解析式为y=x-4,

F(t,t-4),

PF=(t-4)-(t2-3t-4)=-t2+4t,

=+=PFOD+PFBE=PF(OE+BE)=

(-t2+4t)4=-2(t-2) 2+8,

t=2, 最大值为8,此时t2-3t-4=-6,

P点坐标为(2,-6),PBC的最大面积为8.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数y=﹣x+b的图象过点A(0,3),点p是该直线上的一个动点,过点P分别作PM垂直x轴于点M,PN垂直y轴于点N,在四边形PMON上分别截取:PC=MP,MB=OM,OE=ON,ND=NP.

(1)b=  

(2)求证:四边形BCDE是平行四边形;

(3)在直线y=﹣x+b上是否存在这样的点P,使四边形BCDE为正方形?若存在,请求出所有符合的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读与应用:

阅读1:ab为实数,且a>0,b>0,因为,所以,从而(当ab时取等号).

阅读2:函数(常数m>0,x>0),由阅读1结论可知: ,所以当时,函数的最小值为

阅读理解上述内容,解答下列问题:

问题1:已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为,求当x=__________时,周长的最小值为__________.

问题2:已知函数y1x+1(x>-1)与函数y2x2+2x+17(x>-1),当x=__________时, 的最小值为__________.

问题3:某民办学习每天的支出总费用包含以下三个部分:一是教职工工资6400元;二是学生生活费每人10元;三是其他费用.其中,其他费用与学生人数的平方成正比,比例系数为0.01.当学校学生人数为多少时,该校每天生均投入最低?最低费用是多少元?(生均投入=支出总费用÷学生人数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB90°,∠A30°,AB12,点FAB的中点,过点FFDABAC于点D

1)若△AFD以每秒2个单位长度的速度沿射线FB向右移动,得到△A1F1D1,当F1与点B重合时停止移动.设移动时间为t秒,△A1F1D1与△CBF重叠部分的面积记为S.直接写出St的函数关系式.

2)在(1)的基础上,如果D1BF构成的△D1BF为等腰三角形,求出t值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两名采购员同去一家饲料公司购买两次饲料.两次饲料的价格分别为/千克和/千克(都为正数,且),两名采购员的购货方式不同,其中甲每次购买800千克;乙每次用去800元,而不管购买多少饲料.

1)用含的代数式表示甲、乙两名采购员两次购买饲料的平均单价各是多少?

2)若规定:谁两次购买饲料的平均单价低,谁的购货方式合算,请你判断甲、乙两名采购员购货方式哪个更合算?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数的图象的对称轴是直线,它与轴交于两点,与轴交与点,点的坐标分别是

(1)请在平面直角坐标系内画出示意图;

(2)求此图象所对应的函数关系式;

(3)若点是此二次函数图象上位于轴上方的一个动点,求面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的顶点AB的坐标分别为(-40)和(20),BC=.设直线AC与直线x=4交于点E

1)求以直线x=4为对称轴,且过C与原点O的抛物线的函数关系式,并说明此抛物线一定过点E

2)设(1)中的抛物线与x轴的另一个交点为NM是该抛物线上位于CN之间的一动点,求△CMN面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一轮船在处测得灯塔在正北方向,灯塔在南偏东方向,轮船向正东航行了,到达处,测得位于北偏西方向,位于南偏西方向.

(1)线段是否相等?请说明理由;

(2)求间的距离(参考数据).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c (a≠0)的图象如图所示,对称轴是x=-1.下列结论:①ab>0;②b2>4ac;③a-b+2c<0;④8a+c<0.其中正确的是( )

A. ③④ B. ①②③ C. ①②④ D. ①②③④

查看答案和解析>>

同步练习册答案