精英家教网 > 初中数学 > 题目详情
10、如图所示.△ABC内接于⊙O,若∠OAB=28°,则∠C的大小是(  )
分析:由题意可知△OAB是等腰三角形,利用等腰三角形的性质求出∠AOB,再利用圆周角定理确定∠C.
解答:解:如图,连接OB,
∵OA=OB,
∴△AOB是等腰三角形,
∴∠OAB=∠OBA,
∵∠OAB=28°,
∴∠OAB=∠OAB=28°,
∴∠AOB=124°,
∴∠C=62°.
故选B.
点评:本题是利用圆周角定理解题的典型题目,题目难度不大,正确添加辅助线是解题关键,在解题和圆有关的题目是往往要添加圆的半径.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,△ABC内接于⊙O,AB是⊙O的直径,点D在⊙O上,过点C的切线交AD的延长线于点E,且精英家教网AE⊥CE,连接CD.
(1)求证:DC=BC;
(2)若AB=5,AC=4,求tan∠DCE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

19、如图所示,∠ABC内有一点P,在BA、BC边上各取一点P1、P2,使△PP1P2的周长最小.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,△ABC内接于圆O,AB是直径,过A作射线AM,若∠MAC=∠ABC.
(1)求证:AM是圆O的切线;
(2)设D是弧AC的中点,过D作DE⊥AB于E,交AC于F.若AE=2,圆O的半径为5,求cos∠AFE;
(3)设D是弧AC的中点,过D作DE⊥AB于E,交AC于F.连接BD交AC于G,若△DFG的面积为4.5,且DG=3,GC=4,试求△BCG的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)解方程:
1
x+1
+
2
x-1
=
7
x2-1

(2)如图所示,△ABC内接于⊙O,AD是△ABC的边BC上的高,AE是⊙O的直径,连接BE.求 证:△ABE∽△ADC.

查看答案和解析>>

同步练习册答案