【题目】如图,CN是等边△ABC的外角∠ACM内部的一条射线,点A关于CN的对称点为D,连接AD,BD,CD,其中AD,BD分别交射线CN于点E,P.
(1)求证:CD=CB;
(2)若∠ACN= a,求∠BDC的大小(用含a的式子表示);
(3)请判断线段PB,PC与PE三者之间的数量关系,并证明你的结论.
【答案】(1)见解析;(2)∠BDC=60°-a;(3)PB=PC+2PE,理由见解析
【解析】
(1)根据条件得到CN是AD的垂直平分线,证明△ABC为等边三角形即可解答.
(2)求出△ABC是等边三角形,转换角度即可解答.
(3) 在PB上截取PF使PF=PC,连接CF,利用三角形全等解答.
(1)证明:∵点A与点D关于CN对称,
∴CN是AD的垂直平分线,
∴CA=CD,
∵△ABC为等边三角形,
∴CB=CA,
∴CD=CB
(2)解:由(1)可知:CA=CD,CN⊥AD,
∴∠ACD=2∠ACN=2α.
∵△ABC是等边三角形,
∴∠ACB=60°,
∴∠BCD=∠ACB+∠ACD=60°+2 .
∵CB=CD,
∴∠BDC=∠DBC= (180°-∠BCD)=60°-α.
(3)解:证明:结论:PB=PC+2PE在PB上截取PF使PF=PC,连接CF.
∵CA=CD,∠ACD=2 ,
∴∠CDA=∠CAD=90°-α,
∵∠BDC=60°-α,
∴∠PDE=∠CDA-∠BDC=30°,
∴在Rt△DPE中,PD=2PE.
∵∠CPF=∠DPE=90°-∠PDE=60°,
∴△CPF是等边三角形,
∴∠CPF=∠CFP=60°,
∴∠BFC=∠DPC=120°,
在△BFC和△DPC中,
∵ ,
∴△BFC≌△DPC.
∴BF=PD=2PE.
∴PB= PF+BF=PC+2PE
科目:初中数学 来源: 题型:
【题目】在数学兴趣小组活动中,小明进行数学探究活动,将边长为 的正方形ABCD与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线l上,AB与AG在同一直线上.
(1)图1中,小明发现DG=BE,请你帮他说明理由.
(2)小明将正方形ABCD按如图2那样绕点A旋转一周,旋转到当点C恰好落在直线l上时,请你直接写出此时BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知函数的图像与轴交于点,一次函数的图像分别与轴、轴交于点,且与的图像交于点.
(1)求的值;
(2)若,则的取值范围是 ;
(3)求四边形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一架梯子AB长13米,斜靠在一面墙上,梯子底端离墙5米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了5米,那么梯子的底端在水平方向滑动了多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为( )
A. 15 B. 18 C. 21 D. 24
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题探究
(1)如图1,请在半径为的半圆内(含弧和直径)画出面积最大的三角形,并求出这个三角形的面积;
(2)如图2,请在半径为的内(含弧)画出面积最大的矩形,并求出这个矩形的面积;
问题解决
(3)如图3,是一块草坪,其中,,,某开发商现准备再征一块地,把扩充为四边形,使,是否存在面积最大的四边形?若存在,求出四边形的最大面积;若不存在,请说明理由.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+3;其中正确的结论是( )
A. ①②③ B. ①③④ C. ②③④ D. ①②
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).
(1) 请画出△ABC向左平移5个单位长度后得到的△ABC;
(2) 请画出△ABC关于原点对称的△ABC;
(3) 在轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l1的解析式为y=2x﹣2,直线l1与x轴交于点D,直线l2:y=kx+b与x轴交于点A,且经过点B,直线l1、l2交于点C(m,2).
(1)求m;
(2)求直线l2的解析式;
(3)根据图象,直接写出1<kx+b<2x﹣2的解集.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com