分析 以点D为圆心,DA为半径作圆交直线DE于点F,连接CF,AF,BF,首先利用勾股定理的逆定理证明△ABC为直角三角形,进而可得∠FCB=∠ECB,即E和F点重合,再由直角三角形中斜边上的中线等于斜边的一半即可求出DE的长.
解答 解:以点D为圆心,DA为半径作圆交直线DE于点F,连接CF,AF,BF,
∵AB=13,BC=12,CA=5.
∴BC2+CA2=AB2,
∴△ABC为直角三角形,
∵DE⊥AB,
∴∠DBE=90°
∴∠FCB=$\frac{1}{2}$∠FDB=$\frac{1}{2}$×90°=45°,
∵CE平分∠ACB,
∴∠ECB=$\frac{1}{2}$∠ACB=45°,
∴∠FCB=∠ECB,
∵AB为圆的直径,
∴∠AEB=90°,
∴△AEB是直角三角形,
∴DE=DF=$\frac{1}{2}$AB=$\frac{13}{2}$,
故答案为:$\frac{13}{2}$.
点评 本题考查了勾股定理的逆定理的运用、圆周角定理的运用以及直角三角形中斜边上的中线等于斜边的一半性质的运用,题目的设计巧妙、新颖,解题的关键是正确添加辅助线构造直角三角形.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 4组 | B. | 3组 | C. | 2组 | D. | 1组 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\sqrt{5}$ | B. | $\sqrt{7}$ | C. | 3 | D. | 7 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com