精英家教网 > 初中数学 > 题目详情
7.下列各式计算正确的是(  )
A.$\sqrt{2}+\sqrt{3}=\sqrt{5}$B.3$\sqrt{2}-\sqrt{2}$=2$\sqrt{2}$C.2$+\sqrt{2}=2\sqrt{2}$D.$\sqrt{(-2)^{2}}$=±2

分析 根据二次根式的加减,可得答案.

解答 解:A、不是同类二次根式不能相加,故A错误;
B、系数相加被开方数不变,故B正确;
C、不是同类二次根式不能相加,故C错误;
D、$\sqrt{(-2)^{2}}$=$\sqrt{{2}^{2}}$=2,故D错误;
故选:B.

点评 本题考查了二次根式的加减,系数相加被开方数不变是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.如图,抛物线y=-$\frac{1}{2}$x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(-1,0),C(0,2).
(1)求抛物线的表达式;
(2)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;
(3)在抛物线的对称轴上是否存在点P,使△PCD是等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.从2,3,4,5这四个数中,任取两个数p和q(p≠q),构成函数y=px-2和y=x+q,若两个函数图象的交点在直线x=2的左侧,则这样的有序数组(p,q)共有(  )
A.12组B.10组C.6组D.5组

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.已知x2-(2x+8)=0,则3x2-6(x+3)的值为(  )
A.54B.6C.-10D.-18

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.下列运算中,错误的有(  )                                             
①$\sqrt{1\frac{25}{144}}$=1$\frac{5}{12}$,
②$\sqrt{{{(-4)}^2}}$=±4
③$\sqrt{(-3)×({-2})}$=$\sqrt{-3}$×$\sqrt{-2}$,
④$\sqrt{\frac{1}{16}+\frac{1}{25}}$=$\frac{1}{4}$+$\frac{1}{5}$=$\frac{9}{20}$.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如果实数x满足x(x+2)-5=0,那么代数式[($\frac{4x}{(x-1)^{2}}$+1]÷$\frac{x+3}{x-1}$的值为(  )
A.1B.2C.3D.6

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,点O是AC边上一点,连接BO,交AD于点F,OE⊥OB交BC于点E.
(1)如图1,当O为边AC中点,$\frac{AC}{AB}$=2时,求$\frac{OF}{OE}$的值;
(2)如图2,当O为边AC中点,$\frac{AC}{AB}$=n时,求出$\frac{OF}{OE}$的值;
(3)如图3,当$\frac{AO}{OC}$=$\frac{1}{m}$,$\frac{AC}{AB}$=n时,请直接写出$\frac{OF}{OE}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a>0)的顶点为M,直线l与x轴平行,且与抛物线交于点A、B,若△AMB为等腰直角三角形,我们就把抛物线上A、B两点之间的部分与线段AB围成的图象称为该抛物线对应的“准蝶形”,线段AB的长称为碟宽,顶点M称为碟顶.
(1)填空:抛物线y=x2的碟宽为2,碟顶坐标为(0,0);
(2)求抛物线y=a(x-2)2+3(a>0)的碟宽(用含a的代数式表示);
(3)若抛物线y=ax2-4ax-$\frac{5}{3}$(a>0)的碟宽为6,求该抛物线的碟顶坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如果x个人y天做了a个零件,那么y个人用相同的速度做x个零件需要的天数是(  )
A.$\frac{{x}^{2}}{a}$B.$\frac{a}{{x}^{2}}$C.$\frac{{a}^{2}}{x}$D.$\frac{x}{{a}^{2}}$

查看答案和解析>>

同步练习册答案