精英家教网 > 初中数学 > 题目详情
如图,对称轴为直线x=-
7
2
的抛物线经过点A(-6,0)和点B(0,4).
(1)求抛物线的解析式和顶点坐标;
(2)设点E(x,y)是抛物线上的一个动点,且位于第三象限,四边形OEAF是以OA为对角线的平行四边形,求?OEAF的面积S与x的函数关系式,并写出自变量x的取值范围;
①当?OEAF的面积为24时,请判断?OEAF是否为菱形?
②是否存在点E,使?OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.•
(1)设抛物线的解析式为y=a(x+
7
2
2+k(k≠0),
则依题意得:
24
25
a+k=0,
49
4
a+k=4
解之得:a=
2
3

k=-
25
6

即:y=
2
3
(x+
7
2
2-
25
6
,顶点坐标为(-
7
2
,-
25
6
);

(2)∵点E(x,y)在抛物线上,且位于第三象限.
∴S=2S△OAE=2×
1
2
×0A×(-y)
=-6y
=-4(x+
7
2
2+25 (-6<x<-1);
①当S=24时,即-4(x+
7
2
2+25=24,
解之得:x1=-3,x2=-4
∴点E为(-3,-4)或(-4,-4)
当点E为(-3,-4)时,满足OE=AE,故□OEAF是菱形;
当点E为(-4,-4)时,不满足OE=AE,故□OEAF不是菱形.
②不存在.
当0E⊥AE且OE=AE时,□OEAF是正方形,此时点E的坐标为(-3,-3),
而点E不在抛物线上,故不存在点E,使□OEAF为正方形.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知△ABC是边长为4的等边三角形,BC在x轴上,点D为BC的中点,点A在第一象限内,AB与y轴的正半轴相交于点E,点B(-1,0),P是AC上的一个动点(P与点A、C不重合)
(1)求点A、E的坐标;
(2)若y=-
6
3
7
x2+bx+c过点A、E,求抛物线的解析式;
(3)连接PB、PD,设L为△PBD的周长,当L取最小值时,求点P的坐标及L的最小值,并判断此时点P是否在(2)中所求的抛物线上,请充分说明你的判断理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,Rt△ABC中,斜边AB在x轴上,点C在y轴上,且OC=2,OA:OB=1:4,抛物线y=ax2+bx+c经过A、B、C三点.
(1)求此抛物线的解析式;
(2)若直线y=x+b与Rt△ABC相交,所截得的三角形面积是原Rt△ABC面积的
3
10
,求b的值;
(3)将△OAC绕原点O逆时针旋转90°后得到△OEF,如图2,再将△OEF绕平面内某点旋转180°后得△MNQ(点M、N、Q分别与点E、F、O对应),使点M,N在抛物线上,求点M,N的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,半径分别为3
3
3
的⊙O1和⊙O2外切于原点O,在x轴上方的两圆的外公切线AB与⊙O1和⊙O2分别切于点A、B,直线AB交y轴于点C.O2D⊥O1A于点D.
(1)求∠O1O2D的度数;
(2)求点C的坐标;
(3)求经过O1、C、O2三点的抛物线的解析式;
(4)在抛物线上是否存在点P,使△PO1O2为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=2x2+bx-2经过点A(1,0).
(1)求b的值;
(2)设P为此抛物线的顶点,B(a,0)(a≠1)为抛物线上的一点,Q是坐标平面内的点,若以A、B、P、Q为顶点的四边形为平行四边形,这样的Q点有几个,并求出PQ的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,直线y=kx+2与x轴交于点A,与y轴交于点B,与抛物线y=ax2+bx交于点C、D.已知点C的坐标为(2,1),点D的横坐标为
1
2

(1)求点D的坐标;
(2)求抛物线的函数表达式;
(3)抛物线在x轴上方部分是否存在一点P,使△POA的面积比△POB的面积大4?如果存在,求出点P的坐标;如果不存在,说明理由.
(4)将题中的抛物线y=ax2+bx沿x轴平移,当抛物线经过点B时,请直接写出平移的方向和距离.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=
3
4
x2+bx+c与坐标轴交于A、B、C三点,A点的坐标为(-1,0),过点C的直线y=
3
4t
x-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=5t,且0<t<1.
(1)填空:点C的坐标是______,b=______,c=______;
(2)求线段QH的长(用含t的式子表示);
(3)依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某校八年级(1)班共有学生50人,据统计原来每人每年用于购买饮料的平均支出是a元.经测算和市场调查,若该班学生集体改饮某品牌的桶装纯净水,则年总费用由两部分组成,一部分是购买纯净水的费用,另一部分是其它费用780元,其中,纯净水的销售价x(元/桶)与年购买总量y(桶)之间满足如图所示关系.
(1)求y与x的函数关系式;
(2)若该班每年需要纯净水380桶,且a为120时,请你根据提供的信息分析一下:该班学生集体改饮桶装纯净水与个人买饮料,哪一种花钱更少?
(3)当a至少为多少时,该班学生集体改饮桶装纯净水一定合算从计算结果看,你有何感想?(不超过30字)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点C是半圆O的半径OB上的动点,作PC⊥AB于C.点D是半圆上位于PC左侧的点,连接BD交线段PC于E,且PD=PE.
(1)求证:PD是⊙O的切线;
(2)若⊙O的半径为4
3
,PC=8
3
,设OC=x,PD2=y.
①求y关于x的函数关系式;
②当x=
3
时,求tanB的值.

查看答案和解析>>

同步练习册答案