精英家教网 > 初中数学 > 题目详情
如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=-
12
x+b交折线OAB于点E.
(1)记△ODE的面积为S,求S与b的函数关系式;
(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究精英家教网O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出该重叠部分的面积;若改变,请说明理由.
分析:(1)要表示出△ODE的面积,要分两种情况讨论,①如果点E在OA边上,只需求出这个三角形的底边OE长(E点横坐标)和高(D点纵坐标),代入三角形面积公式即可;②如果点E在AB边上,这时△ODE的面积可用长方形OABC的面积减去△OCD、△OAE、△BDE的面积;
(2)重叠部分是一个平行四边形,由于这个平行四边形上下边上的高不变,因此决定重叠部分面积是否变化的因素就是看这个平行四边形落在OA边上的线段长度是否变化.
解答:精英家教网解:(1)∵四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),
∴B(3,1),
若直线经过点A(3,0)时,则b=
3
2

若直线经过点B(3,1)时,则b=
5
2

若直线经过点C(0,1)时,则b=1
①若直线与折线OAB的交点在OA上时,即1<b≤
3
2
,如图1,
此时E(2b,0)
∴S=
1
2
OE•CO=
1
2
×2b×1=b;
②若直线与折线OAB的交点在BA上时,即
3
2
<b<
5
2
,如图2精英家教网
此时E(3,b-
3
2
),D(2b-2,1),
∴S=S-(S△OCD+S△OAE+S△DBE
=3-[
1
2
(2b-2)×1+
1
2
×(5-2b)•(
5
2
-b)+
1
2
×3(b-
3
2
)]
=
5
2
b-b2
∴S=
b(1<b≤
3
2
)
5
2
b-b2(
3
2
<b<
5
2
)


(2)如图3,设O1A1与CB相交于点M,OA与C1B1相交于点N,则矩形O1A1B1C1与矩形OABC的重叠部精英家教网分的面积即为四边形DNEM的面积.
由题意知,DM∥NE,DN∥ME,
∴四边形DNEM为平行四边形
根据轴对称知,∠MED=∠NED
又∵∠MDE=∠NED,
∴∠MED=∠MDE,
∴MD=ME,
∴平行四边形DNEM为菱形.
过点D作DH⊥OA,垂足为H,设菱形DNEM的边长为a,
由题意知,D(2b-2,1),E(2b,0),
∴DH=1,HE=2b-(2b-2)=2,
∴HN=HE-NE=2-a,
则在Rt△DHN中,由勾股定理知:a2=(2-a)2+12
∴a=
5
4

∴S四边形DNEM=NE•DH=
5
4

∴矩形OA1B1C1与矩形OABC的重叠部分的面积不发生变化,面积始终为
5
4
点评:本题是一个动态图形中的面积是否变化的问题,看一个图形的面积是否变化,关键是看决定这个面积的几个量是否变化,本题题型新颖,是个不可多得的好题,有利于培养学生的思维能力,但难度较大,具有明显的区分度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,四边形OABC为正方形,边长为6,点A,C分别在x轴,y轴的正半轴上,点D在OA上,且D的坐标为(2,0),P是OB上的一动点,试求PD+PA和的最小值是(  )
A、2
10
B、
10
C、4
D、6

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=-
12
x
+b交折线OAB于点E.记△ODE的面积为S.
(1)当点E在线段OA上时,求S与b的函数关系式;并求出b的范围;
(2)当点E在线段AB上时,求S与b的函数关系式;并求出b的范围;
(3)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形OA1B1C1,试探究OA1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出该重叠部分的面积;若改变,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•吴中区一模)如图所示,四边形OABC是矩形,点A、C的坐标分别为(6,0),(0,2),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=-
12
x
+b交折线OAB于点E.
(1)记△ODE的面积为S,求S与b的函数关系式;
(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究四边形O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出该重叠部分的面积;若改变,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

小明参加汽车驾驶培训,在实际操作考试时,被要求进行启动加速、匀速运行、制动减速三个连贯过程,在加速和减速运动过程中,路程和速度均满足关系s=v0t+
12
at2
,v0为加速或减速的起始速度,加速时a为正,减速时a为负,匀速时a=0,加速或减速t秒后的瞬时速度v=v0+at,小明在操作中瞬时速度v与时间t的关系如图所示,其中OA为匀加速,AB为匀速,BC为匀减速.
(1)若减速过程与加速过程完全相反,即BC与OA关于AB的中垂线成轴对称,求BC的解析式.
(2)当0≤t≤300时,求汽车行驶的路程s与时间t的函数关系式.
(3)汽车行驶t秒后,
①若经途中D点,过点D作垂线交AB于点E,试证明汽车行驶的路程恰等于四边形OAED的面积.
②若汽车行驶至M点,过点M做垂线交BC于点N,汽车行驶的路程是否等于五边形OABNM的面积呢?试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,四边形ABCD与A′B′C′D′以0为位似中心,位似比为1:2.则点A的对应点是点
A′
A′
.点B的对应点是点
B′
B′
.线段AB的对应线段是线段
A′B′
A′B′
,∠DAB的对应角是
∠D′A′B′
∠D′A′B′
,线段AD与A′D′的比为
1:2
1:2
.它们关于点
O
O
位似.△OAB与
△OA′B′
△OA′B′
相似,相似比为
1:2
1:2

查看答案和解析>>

同步练习册答案