【题目】如图,抛物线y=x2+bx+c与x轴交于点A和B(3,0),与y轴交于点C(0,3).
(1)求抛物线的解析式;
(2)若点M是抛物线上在x轴下方的动点,过M作MN∥y轴交直线BC于点N,求线段MN的最大值;
(3)E是抛物线对称轴上一点,F是抛物线上一点,是否存在以A,B,E,F为顶点的四边形是平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.
【答案】(1) y=x2﹣4x+3;(2);(3)见解析.
【解析】
(1)利用待定系数法进行求解即可;
(2)设点M的坐标为(m,m2﹣4m+3),求出直线BC的解析,根据MN∥y轴,得到点N的坐标为(m,﹣m+3),由抛物线的解析式求出对称轴,继而确定出1<m<3,用含m的式子表示出MN,继而利用二次函数的性质进行求解即可;
(3)分AB为边或为对角线进行讨论即可求得.
(1)将点B(3,0)、C(0,3)代入抛物线y=x2+bx+c中,
得:,
解得:,
故抛物线的解析式为y=x2﹣4x+3;
(2)设点M的坐标为(m,m2﹣4m+3),设直线BC的解析式为y=kx+3,
把点B(3,0)代入y=kx+3中,
得:0=3k+3,解得:k=﹣1,
∴直线BC的解析式为y=﹣x+3,
∵MN∥y轴,
∴点N的坐标为(m,﹣m+3),
∵抛物线的解析式为y=x2﹣4x+3=(x﹣2)2﹣1,
∴抛物线的对称轴为x=2,
∴点(1,0)在抛物线的图象上,
∴1<m<3.
∵线段MN=﹣m+3﹣(m2﹣4m+3)=﹣m2+3m=﹣(m﹣)2+,
∴当m=时,线段MN取最大值,最大值为;
(3)存在.点F的坐标为(2,﹣1)或(0,3)或(4,3).
当以AB为对角线,如图1,
∵四边形AFBE为平行四边形,EA=EB,
∴四边形AFBE为菱形,
∴点F也在对称轴上,即F点为抛物线的顶点,
∴F点坐标为(2,﹣1);
当以AB为边时,如图2,
∵四边形AFBE为平行四边形,
∴EF=AB=2,即F2E=2,F1E=2,
∴F1的横坐标为0,F2的横坐标为4,
对于y=x2﹣4x+3,
当x=0时,y=3;
当x=4时,y=16﹣16+3=3,
∴F点坐标为(0,3)或(4,3),
综上所述,F点坐标为(2,﹣1)或(0,3)或(4,3).
科目:初中数学 来源: 题型:
【题目】(1)问题发现
如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:
①∠AEB的度数为______;
②线段AD,BE之间的数量关系为______.
(2)拓展探究
如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在相同条件下重复试验,若事件A发生的概率是,则下列说法正确的是( )
A. 说明在相同条件下做100次试验,事件A必发生50次
B. 说明在相同条件下做多次这种试验,事件A发生的频率必是50%
C. 说明在相同条件下做两个100次这种试验,事件A平均发生50次
D. 说明在相同条件下做100次这种试验,事件A可能发生50次
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)
根据所给信息,解答以下问题:
(1)在扇形统计图中,C对应的扇形的圆心角是 度;
(2)补全条形统计图;
(3)所抽取学生的足球运球测试成绩的中位数会落在 等级;
(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠C=90°,AC=16cm,BC=8cm,一动点P从点C出发沿着CB方向以2cm/s的速度运动,另一动点Q从A出发沿着AC边以4cm/s的速度运动,P、Q两点同时出发,运动时间为t(s).
(1)若△PCQ的面积是△ABC面积的,求t的值?
(2)△PCQ的面积能否与四边形ABPQ面积相等?若能,求出t的值;若不能,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,弦BC=OB,点D是上一动点,点E是CD中点,连接BD分别交OC,OE于点F,G.
(1)求∠DGE的度数;
(2)若=,求的值;
(3)记△CFB,△DGO的面积分别为S1,S2,若=k,求的值.(用含k的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点O是∠ABC和∠ACB两个内角平分线的交点,过点O作EF∥BC分别交AB,AC于点E,F,已知△ABC的周长为8,BC=x,△AEF的周长为y,则表示y与x的函数图象大致是( )
A. B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形中,,,是的中点.过点作,垂足为.将沿点到点的方向平移,得到.设、分别是、的中点,当点与点重合时,四边形的面积为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com