精英家教网 > 初中数学 > 题目详情
15.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=6,DH=2,平移距离CF为3,则BE=3,阴影部分面积为15.

分析 先判断出阴影部分面积等于梯形ABEH的面积,再根据平移变化只改变图形的位置不改变图形的形状可得DE=AB,然后求出HE,根据平移的距离求出BE=CF=3,然后利用梯形的面积公式列式计算即可得解.

解答 解:∵△ABC沿着点B到点C的方向平移到△DEF的位置,
∴△ABC的面积=△DEF的面积,
∴阴影部分面积等于梯形ABEH的面积,
由平移的性质得,DE=AB=6,BE=CF=3,
∵AB=6,DH=2,
∴HE=DE-DH=6-2=4,
∴阴影部分的面积=$\frac{1}{2}$×(4+6)×3=15.
故答案为:3,15.

点评 本题考查了平移的性质,对应点连线的长度等于平移距离,平移变化只改变图形的位置不改变图形的形状,熟记各性质并判断出阴影部分面积等于梯形ABEH的面积是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.(1)如图1,AB=AD,∠B=∠D,∠1=∠2,求证:△ABC≌△ADE.
(2)如图2,已知,AD是△ABC的BC边上的中线,点E,F分别是AD及其延长线上的点,且DE=DF,求证:BF∥CE.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.在一次函数y=-3x+1中,当-1<x<2时,对应y的取值范围是-5<y<4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.先化简,再求值:
(1)2(2x-3y)-(3x+2y+1),其中x=2,y=-0.5;
(2)2(a2b-ab)-3(a2b-$\frac{2}{3}$ab),其中a,b满足(a+$\sqrt{2}$)2+|b-3|=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.(1)计算:$\sqrt{3}$sin60°-$\sqrt{2}$cos45°+tan230°;
(2)若$\frac{x}{2}$=$\frac{y}{3}$=$\frac{z}{4}$≠0,求$\frac{2x+3y}{z}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.含45°角的直角三角板如图放置在平面直角坐标系中,其中A(-2,0),B(0,1),则直线BC的解析式为y=-$\frac{1}{3}$x+1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,已知△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM⊥AE于点M,连结BE.
(1)请判断线段AD、BE之间的数量关系,并说明理由;
(2)求证:AM=CM+BE.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图所示,平面直角坐标系的原点O是等边△ABC的中心,A(0,1),把△ABC绕点O顺时针旋转,每秒旋转60°,则第2017秒时,点A的坐标为(  )
A.(0,1)B.($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$)C.($\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$)D.(-$\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知点O是坐标系的原点,直线y=-x+4与双曲线y=$\frac{mn}{x}$(mn>0)交于两个不同的点A(m,n)($\frac{5}{2}$<n<4)和B(p,q),AC⊥x轴交于点C,求△ABC的面积S的取值范围.

查看答案和解析>>

同步练习册答案