精英家教网 > 初中数学 > 题目详情

如图,已知在△ABC中,AB=AC,D是△ABC外接圆劣弧AC上的点(不与A,C重合),延长BD至E.
(1)求证:AD的延长线平分∠CDE;
(2)若∠BAC=30°,且△ABC底边BC边上高为1,求△ABC外接圆的周长.

(1)证明:如图,设F为AD延长线上一点,
∵A,B,C,D四点共圆,
∴∠CDF=∠ABC,
∵AB=AC,
∴∠ABC=∠ACB,
∵∠ADB=∠ACB,
∴∠ADB=∠CDF,
∵∠ADB=∠EDF(对顶角相等),
∴∠EDF=∠CDF,
即AD的延长线平分∠CDE.


(2)解:设O为外接圆圆心,连接AO比延长交BC于H,连接OC,
∵AB=AC,
=
∴AH⊥BC,
∴∠OAC=∠OAB=∠BAC=×30°=15°,
∴∠COH=2∠OAC=30°,
设圆半径为r,
则OH=OC•cos30°=r,
∵△ABC中BC边上的高为1,
∴AH=OA+OH=r+r=1,
解得:r=2(2-),
∴△ABC的外接圆的面积为:4π(2-).
分析:(1)要证明AD的延长线平分∠CDE,即证明∠EDF=∠CDF,转化为证明∠ADB=∠CDF,再根据A,B,C,D四点共圆的性质,和等腰三角形角之间的关系即可得到.
(2)求△ABC外接圆的面积,只需解出圆半径,故作等腰三角形底边上的垂直平分线即过圆心,再连接OC,根据角之间的关系在三角形内即可求得圆半径,可得到外接圆面积.
点评:此题主要考查圆内接多边形的性质、圆周角定理、等腰三角形的性质以及三角形的外接圆的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想与方程思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,已知在△ABC中,AD、AE分别是BC边上的高和中线,AB=9cm,AC=7cm,BC=8m,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,PN⊥CD于N,求证:PM=PN.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,AB=AC,∠A=100°,CD是∠ACB的平分线.
(1)∠ADC=
60°
60°

(2)求证:BC=CD+AD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,∠B与∠C的平分线交于点P.当∠A=70°时,则∠BPC的度数为
125°
125°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,CD=CE,∠A=∠ECB,试说明CD2=AD•BE.

查看答案和解析>>

同步练习册答案