精英家教网 > 初中数学 > 题目详情
如图,⊙O的直径AB=2,AM和BN是它的两条切线,DE切⊙O于E,交AM于D,交BN于C.设AD=x,B精英家教网C=y.
(1)求证:AM∥BN;
(2)求y关于x的关系式;
(3)求四边形ABCD的面积S,并证明:S≥2.
分析:(1)根据切线的性质得到它们都和直径垂直就可证明;
(2)作直角梯形的另一高,构造一个直角三角形,根据切线长定理和勾股定理列方程,再表示出关于y的函数关系式;
(3)根据直角梯形的面积公式表示梯形的面积,再根据求差法比较它们的大小.
解答:(1)证明:∵AB是直径,AM、BN是切线,
∴AM⊥AB,BN⊥AB,
∴AM∥BN.

精英家教网(2)解:过点D作DF⊥BC于F,则AB∥DF.
由(1)AM∥BN,∴四边形ABFD为矩形.
∴DF=AB=2,BF=AD=x.
∵DE、DA,CE、CB都是切线,
∴根据切线长定理,得DE=DA=x,CE=CB=y.
在Rt△DFC中,DF=2,DC=DE+CE=x+y,CF=BC-BF=y-x,
∴(x+y)2=22+(y-x)2
化简,得y=
1
x
(x>0).

(3)解:由(1)、(2)得,四边形的面积S=
1
2
AB(AD+BC)=
1
2
×2×(x+
1
x
),
即S=x+
1
x
(x>0).
∵(x+
1
x
)-2=x-2+
1
x
=(
x
-
1
x
2≥0,当且仅当x=1时,等号成立.
∴x+
1
x
≥2,即S≥2.
点评:此题综合运用了切线的性质定理、切线长定理、勾股定理以及求差法比较两个数的大小.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,⊙O的直径AB与弦CD相交于E,
BC
=
BD
,⊙O的切线BF与弦AD的延长线相交于点F.
(1)求证:CD∥BF.
(2)连接BC,若⊙O的半径为4,cos∠BCD=
3
4
,求线段AD、CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的直径AB与弦CD(不是直径)相交于E,E是CD的中点,过点B作BF∥CD交AD的延长线于
点F.
(1)求证:BF是⊙O的切线;
(2)连接BC,若⊙O的半径为5,∠BCD=38°,求线段BF、BC的长.(精确到0.1)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O的直径AB,CD互相垂直,P为  上任意一点,连PC,PA,PD,PB,下列结论:
①∠APC=∠DPE;
 ②∠AED=∠DFA;
CP+DP
BP+AP
=
AP
DP
.其中正确的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•柳州)如图,⊙O的直径AB=6,AD、BC是⊙O的两条切线,AD=2,BC=
92

(1)求OD、OC的长;
(2)求证:△DOC∽△OBC;
(3)求证:CD是⊙O切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O的直径AB垂直弦CD于P,且P是半径OB的中点,CD=6cm,则直径AB的长是
4
3
cm
4
3
cm

查看答案和解析>>

同步练习册答案