精英家教网 > 初中数学 > 题目详情
1.已知:如图,在平行四边形ABCD中,⊙O是经过A、B、C三点的圆,CD与⊙O相切于点C,点P是$\widehat{BC}$上的一个动点(点P不与B、C点重合),连接PA、PB、PC.
(1)求证:CA=CB;
(2)①点P满足当AC=AP时,△CPA≌△ABC,请说明理由;
②当∠ABC的度数为60时,四边形ABCD是菱形.

分析 (1)作CE⊥AB于E,由于CA=CB,根据等腰三角形的性质得CE为AB的垂直平分线,则点O在CE上,再根据平行四边形的性质得AB∥CD,
(2)当AC=AP时,△CPA≌△ABC.由于AC=BC,AC=AP,则∠ABC=∠BAC,∠APC=∠ACP,根据圆周角定理得∠ABC=∠APC,则∠BAC=∠ACP,加上AC=CA,即可得到△CPA≌△ABC;
(3)如图2,连接OC,AC,OB,根据平行线的性质得到∠BCD=120°,根据切线的性质得到∠OCD=90°,推出BO垂直平分AC,即可得到结论.

解答 (1)证明:
连接CO并延长交AB于E,如图,
∵CD与⊙O相切于点C,
∴CE⊥CD,
∵四边形ABCD为平行四边形,
∴AB∥CD,
∴CE⊥AB,
∴AE=BE,
∴BC=AC;

(2)解:当AC=AP时,△CPA≌△ABC.
证明如下:∵AC=BC,AC=AP,
∴∠ABC=∠BAC,∠APC=∠ACP,
∵∠ABC=∠APC,
∴∠BAC=∠ACP,
在△CPA与△ABC中,$\left\{\begin{array}{l}{∠APC=∠ABC}\\{∠ACP=∠CAB}\\{AC=CA}\end{array}\right.$,
∴△CPA≌△ABC;
故答案为:AC=AP;

(3)解:当∠ABC的度数为60°时,四边形ABCD是菱形,
如图2,连接OC,AC,OB,
∵∠ABC=60°,
∴∠BCD=120°,
∵CD与⊙O相切于点C,
∴∠OCD=90°,
∴∠BCO=30°,
∵OB=OC,
∴∠OBC=30°,
∴∠ABO=30°,
∴BO垂直平分AC,
∴AB=BC,
∴四边形ABCD是菱形.
故答案为:60°.

点评 本题考查了切线的性质,经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了全等三角形的判定与性质和平行四边形的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.观察如图所示的总阵图和相应的等式,探究其中的规律.

①1=12  ②1+3=22  ③1+3+5=32  ④1+3+5+7=42    ⑤1+3+5+7+9=52
(1)在④和⑤后面的横线上分别写上相应的等式;
(2)通过猜想写出第n个点阵图相应的等式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.(1)探索:先观察并计算下列各式,在空白处填上“>”、“<”或“=”,并完成后面的问题.
$\sqrt{4}$×$\sqrt{16}$=$\sqrt{4×16}$,$\sqrt{49}$×$\sqrt{9}$=$\sqrt{49×9}$,$\sqrt{\frac{9}{25}}$×$\sqrt{25}$=$\sqrt{\frac{9}{25}×25}$,$\sqrt{\frac{16}{9}}$×$\sqrt{\frac{4}{25}}$=$\sqrt{\frac{16}{9}×\frac{4}{25}}$…
用$\sqrt{a}$,$\sqrt{b}$,$\sqrt{ab}$表示上述规律为:$\sqrt{a}$•$\sqrt{b}$=$\sqrt{ab}$(a≥0,b≥0);
(2)利用(1)中的结论,求$\sqrt{8}$×$\sqrt{\frac{1}{2}}$的值
(3)设x=$\sqrt{3}$,y=$\sqrt{6}$试用含x,y的式子表示$\sqrt{54}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,有足够多的边长为a的小正方形(A类)、宽为a长为b的长方形(B类)以及边长为b的大正方形(C类),发现利用图①中的三种材料若干可以拼出一些长方形来解释某些等式.
尝试解决:(1)取图①中的若干个(三类图形都要取到)拼成一个长方形,使其面积为(a+b)(a+b),在下面虚线框中画出图形,并根据图形回答(a+b)(a+b)=a2+2ab+b2
(2)图②是由图①中的三种材料拼出的一个长方形,根据②可以得到并解释等式:a2+3ab+2b2
(3)若取其中的若干个(三类图形都要取到)拼成一个长方形,使其面积为3a2+4ab+b2
①你画的图中需要B类卡片4张;
②分解因式:3a2+4ab+b2
拓展研究:如图③,大正方形的边长为m,小正方形的边长为n,若用m、n表示四个直角三角形的两直角边边长( b>a ),观察图案,以下关系式中正确的有(1),(4).(填写正确选项的序号)
(1)ab=$\frac{{m}^{2}-{n}^{2}}{2}$(2)a+b=m(3)a2+b2=$\frac{{m}^{2}+{n}^{2}}{2}$(4)a2+b2=m2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,已知图①中抛物线y=ax2+bx+c经过点D(-1,0)、C(0,-1)、E(1,0).
(1)求图①中抛物线的函数表达式;
(2)将图①中抛物线向上平移一个单位,再绕原点O顺时针旋转180°后得到图②中抛物线,则图②中抛物线的函数表达式为y=-x2
(3)图②中抛物线与直线y=-$\frac{1}{2}$x-$\frac{1}{2}$相交于A、B两点(点A在点B的左侧),如图③,求点A、B的坐标,并直接写出当一次函数的值大于二次函数的值时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图①,点P是∠BAC角平分线上一点,D,E分别在射线AB,AC上(不与A重合),且AD≠AE,若PD=PE,我们称△PDE为∠BAC的“伴随等腰三角形”.
(1)求证:∠ADP+∠AEP=180°;
(2)如图②,∠BAC的伴随等腰三角形△PDE的底边与AP交于点Q,若AP=5,AQ=4,求PD的长;
(3)如图③,∠BAC=60°,AP=3,记伴随等腰三角形△PDE的底边长为l,请直接写出l的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.某学校开学初有一批学生需要住宿,如果每间宿舍安排3人,就会有7人没床位;如果每间宿舍安排4人,将会空出1间宿舍.问该校有多少学生住宿?
如果设该校有x人住宿,那么依题意可以列出的方程是(  )
A.$\frac{x+7}{3}$=$\frac{x}{4}$+1B.$\frac{x+7}{3}$=$\frac{x}{4}$-1C.$\frac{x-7}{3}$=$\frac{x}{4}$+1D.$\frac{x-7}{3}$=$\frac{x}{4}$-1

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.用科学记数法表示2017(保留三个有效数字),下列说法正确的是(  )
A.0.20×104B.2.02×103C.2.0×104D.2.01×103

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.若x:y=1:3,则$\frac{2x+y}{x-y}$的值是-$\frac{5}{2}$.

查看答案和解析>>

同步练习册答案