精英家教网 > 初中数学 > 题目详情

如图,四边形ABCD的对角线AC与BD相交于O点,∠1=∠2,∠3=∠4.

求证:(1)△ABC≌△ADC;(2)BO=DO.

(1)由∠1=∠2,∠3=∠4,再结合公共边AC即可作出判断;
(1)由△ABC≌△ADC证得AB=AD,再结合∠1=∠2,公共边AO可证得△ABO≌△ADO,问题得证.

解析试题分析:(1)∵∠1=∠2,AC=AC,∠3=∠4
∴△ABC≌△ADC;
(2)∵△ABC≌△ADC
∴AB=AD
∵∠1=∠2,AO=AO
∴△ABO≌△ADO
∴BO=DO.
考点:全等三角形的判定和性质
点评:全等三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案