精英家教网 > 初中数学 > 题目详情
在直线l上依次摆放着七个正方形(如图所示)。已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4的值为(  )
A.6B.5C.4D.3
C

试题分析:在△ABC和△CDE中,
EC=AC
∠ECD=∠CAB
∠ACB=∠CED
∴△ABC≌△CDE,∴AB=CD,BC=DE,
∴AB2+DE2=DE2+CD2=CE2=3,
同理可证FG2+LK2=HL2=1,
∴S1+S2+S3+S4=CE2+HL2=1+3=4.
故选C
点评:本题考查了全等三角形的证明,考查了勾股定理的灵活运用,本题中证明AB2+DE2=DE2+CD2=CE2是解题的关键
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

【问题提出】
规定:四条边对应相等,四个角对应相等的两个四边形全等.
我们借助学习“三角形全等的判定”获得的经验与方法对“全等四边形的判定”进行探究.
【初步思考】
在两个四边形中,我们把“一条边对应相等”或“一个角对应相等”称为一个条件,满足4个条件的两个四边形不一定全等,如边长相等的正方形与菱形就不一定全等.类似地,我们容易知道两个四边形全等至少需要5个条件.
【深入探究】
小莉所在学习小组进行了研究,她们认为5个条件可分为以下四种类型:
Ⅰ一条边和四个角对应相等;
Ⅱ二条边和三个角对应相等;
Ⅲ三条边和二个角对应相等;
Ⅳ四条边和一个角对应相等.
(1)小明认为“Ⅰ一条边和四个角对应相等”的两个四边形不一定全等,请你举例说明.
(2)小红认为“Ⅳ四条边和一个角对应相等”的两个四边形全等,请你结合下图进行证明.
已知:如图,          
求证:                     
证明:

(3)小刚认为还可以对“Ⅱ二条边和三个角对应相等”进一步分类,他以四边形和四边形为例,分为以下四类:




其中能判定四边形和四边形全等的是     (填序号),概括可得“全等四边形的判定方法”,这个判定方法是         
(4)小亮经过思考认为也可以对“Ⅲ三条边和二个角对应相等”进一步分类,请你仿照小刚的方法先进行分类,再概括得出一个全等四边形的判定方法.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一、阅读理解:
在△ABC中,BC=a,CA=b,AB=c;
(1)若∠C为直角,则
(2)若∠C为为锐角,则的关系为:
(3)若∠C为钝角,试推导的关系.
二、探究问题:在△ABC中,BC=a=3,CA=b=4,AB=c;若△ABC是钝角三角形,求第三边c的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示,BC=1,数轴上点A所表示的数为a,则a值为(   )
A.+1B.-+1C.-1D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,AD⊥BC于点D,BD=CD,若BC=6,AD=5,
则图中阴影部分的面积为 (      )
A.30B.15
C.7.5D.6

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示,∠1+∠2+∠3+∠4的度数为(        )
 
A100°                B.180°             C.360°               D.无法确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

等腰三角形的两边长分别为3、6,则该三角形的周长为(    )
A.12或15B.9C.12D.15

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知一个多边形的每一个内角都是,则这个多边形的边数为      .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,沿AC方向开山修一条公路,为了加快施工进度,要在小山的另一边寻找点E同时施工,从AC上的一点B取∠ABD=127º,沿BD的方向前进,取∠BDE=37º,测得BD=520m,并且AC、BD和DE在同一平面内.

(1)施工点E 离D多远正好能使A、C、E成一直线(结果保留整数)
(2)在(1)的条件下,若BC=80m,求公路CE段的长(结果保留整数)
(参考数据:sin37º≈0.60,  cos37º≈ 0.80,  tan37º≈0.75))

查看答案和解析>>

同步练习册答案