【题目】如图,在Rt△ABO中,∠OBA=90°,AB=OB,点C在边AB上,且C(6,4),点D为OB的中点,点P为边OA上的动点,当∠APC=∠DPO时,点P的坐标为 ____.
【答案】(,)
【解析】
根据题意,△ABO为等腰直角三角形,由点C坐标为(6,4),可知点B为(6,0),点A为(6,6),则直线OA为,作点D关于OA的对称点E,点E恰好落在y轴上,连接CE,交OA于点P,则点E坐标为(0,3),然后求出直线CE的解析式,联合,即可求出点P的坐标.
解:在Rt△ABO中,∠OBA=90°,AB=OB,
∴△ABO是等腰直角三角形,
∵点C在边AB上,且C(6,4),
∴点B为(6,0),
∴OB=6=AB,
∴点A坐标为:(6,6),
∴直线OA的解析式为:;
作点D关于OA的对称点E,点E恰好落在y轴上,连接CE,交OA于点P,
∴∠APC=∠OPE=∠DPO,OD=OE,
∵点D是OB的中点,
∴点D的坐标为(3,0),
∴点E的坐标为:(0,3);
设直线CE的解析式为:,
把点C、E代入,得:,
解得:,
∴直线CE的解析式为:;
∴,解得:,
∴点P的坐标为:(,);
故答案为:(,).
科目:初中数学 来源: 题型:
【题目】如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M.
(1)求∠E的度数.
(2)求证:M是BE的中点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图、是两条垂直的公路,设计时想在拐弯处用一段圆弧形弯道把它们连接起来(圆弧在、两处分别与道路相切),测得米,.
在图中画出圆弧形弯道的示意图(用尺规作图,保留作图痕迹,不写作法与证明);
计算弯道部分的长度(结果用表示并保留根号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙、丙、丁4名同学进行一次羽毛球单打比赛,要从中选2名同学打第一场比赛,求下列事件的概率。
(1)已确定甲打第一场,再从其余3名同学中随机选取1名,恰好选中乙同学;
(2)随机选取2名同学,其中有乙同学.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠MON=90°,点A、B分别在边ON和OM上(∠OAB≠45°).
(1)根据要求,利用尺规作图,补全图形:
第①步:作∠MON的平分线OC,作线段AB的垂直平分线l,OC和l交于点P,第②步:连接PA、PB;
(2)结合补完整的图形,判断PA和PB有什么数量关系和位置关系?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.点P是x轴上的一个动点.
(1)求此抛物线的解析式;
(2)当PA+PB的值最小时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=(m+1)x+的图象与x轴的负半轴相交于点A,与y轴相交于点B,且△OAB的面积为.
(1)求m的值及点A的坐标;
(2)过点B作直线BP与x轴的正半轴相交于点P,且OP=3OA,求直线BP的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,在BC边上有两动点D、E,满足2∠DAE=∠BAC,将△AEC绕A旋转,使得AC与AB重合,点E落到点E’.
(1)求证:∠DAE’=∠DAE;
(2)当∠BE’D=20°时,求∠DEA的度数;
(3)当BD=1,EC=2,△BE’D又为直角三角形时,求∠BAC的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com