分析 根据观察等式:①$\sqrt{1+\frac{1}{3}}$=2$\sqrt{\frac{1}{3}}$,②$\sqrt{2+\frac{1}{4}}$=3$\sqrt{\frac{1}{4}}$,③$\sqrt{3+\frac{1}{5}}$=4$\sqrt{\frac{1}{5}}$,找出规律解答即可.
解答 解:根据观察等式找出规律可猜想,第n个算式为:
$\sqrt{n+\frac{1}{n+2}}=(n+1)\sqrt{\frac{1}{n+2}}$.
故答案为:$\sqrt{n+\frac{1}{n+2}}=(n+1)\sqrt{\frac{1}{n+2}}$.
点评 本题考查了二次根式的性质与化简,解答本题的关键在于认真观察算式并找出规律.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com