【题目】如图,在Rt△ABC中,∠ACB=90°,分别以AB、BC为一边向外作正方形ABFG、BCED,连接AD、CF,AD与CF交于点M,AB与CF交于点H.
(1)求证:△ABD≌△FBC;
(2)已知AD=6,求四边形AFDC的面积;
(3)在△ABC中,设BC=a,AC=b,AB=c,当∠ACB≠90°时,c≠a
+b
.在任意△ABC中,c
=a
+b
+k.就a=3,b=2的情形,探究k的取值范围(只需写出你得到的结论即可).
【答案】(1)详见解析;(2)18;(3)-12<k<12.
【解析】
(1)根据四边形ABFG、BCED是正方形得到两对边相等,一对直角相等,根据图形利用等式的性质得到一对角相等,利用SAS即可得到三角形全等;
(2)连接FD,由(1)的三角形全等,得到AD=FC,∠BAD=∠BFC,利用等式的性质及垂直定义得到AD与CF垂直,四边形AFDC面积=三角形ACD面积+三角形ACF面积+三角形DMF面积-三角形ACM面积,求出即可;
(3)根据a,b及c为三角形三边长,利用两边之和大于第三边,两边之差小于第三边列出关于c的不等式,将a与b的值代入求出c的范围,进而确定出c2的范围,即a2+b2+k的范围,即可求出k的范围.
(1)∵四边形ABFG、BCED是正方形,
∴AB=FB,CB=DB,∠ABF=∠CBD=90°,
∴∠ABF+∠ABC=∠CBD+∠ABC,
即∠ABD=∠CBF,
在△ABD和△FBC中,
,
∴△ABD≌△FBC(SAS);
(2)连接FD,设CF与AB交于点N,
∵△ABD≌△FBC,
∴AD=FC,∠BAD=∠BFC,
∴∠AMF=180°﹣∠BAD﹣∠CNA=180°﹣(∠BFC+∠BNF)=180°﹣90°=90°,
∴AD⊥CF,
∵AD=6,
∴FC=AD=6,
∴S四边形AFDC=S△ACD+S△ACF+S△DMF﹣S△ACM,
=ADCM+
CFAM+
DMFM﹣
AMCM,
=3CM+3AM+(6﹣AM)(6﹣CM)﹣
AMCM,
=18;
(3)∵在△ABC中,设BC=a=3,AC=b=2,AB=c,
∴a﹣b<c<a+b,即1<c<5,
∴1<c2<25,即1<a2+b2+k=13+k<25,
解得:﹣12<k<12.
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点A出发以每秒1cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).
(1)若点P在AC上,且满足PA=PB时,求出此时t的值;
(2)若点P恰好在∠BAC的角平分线上(但不与A点重合),求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=4,AC=3,BC=5,DE是BC的垂直平分线,DE分别交BC、AB于点D、E.
(1)求证:△ABC为直角三角形.
(2)求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P是菱形ABCD内一点,PE⊥AB,PF⊥AD,垂足分别是E和F,若PE=PF,下列说法不正确的是( )
A. 点P一定在菱形ABCD的对角线AC上
B. 可用HL证明Rt△AEP≌Rt△AFP
C. AP平分∠BAD
D. 点P一定是菱形ABCD的两条对角线的交点
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点C作CF平行于BA交PQ于点F,连接AF.
(1)求证:△AED≌△CFD;
(2)求证:四边形AECF是菱形.
(3)若AD=3,AE=5,则菱形AECF的面积是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(阅读)如图1,四边形OABC中,OA=a,OC=3,BC=2,
∠AOC=∠BCO=90°,经过点O的直线l将四边形分成两部分,直线l与OC所成的角设为θ,将四边形OABC的直角∠OCB沿直线l折叠,点C落在点D处,我们把这个操作过程记为FZ[θ,a].
(理解)
若点D与点A重合,则这个操作过程为FZ[45°,3];
(尝试)
(1)若点D恰为AB的中点(如图2),求θ;
(2)经过FZ[45°,a]操作,点B落在点E处,若点E在四边形OABC的边AB上,求出a的值;若点E落在四边形OABC的外部,直接写出a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,矩形OABC的顶点A(﹣6,0),C(0,2).将矩形OABC绕点O顺时针方向旋转,使点A恰好落在OB上的点A1处,则点B的对应点B1的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场进行有奖促销活动,规定顾客购物达到一定金额就可以获得一次转动转盘的机会(如图),当转盘停止转动时指针落在哪一区域就可获得相应的奖品(若指针落在两个区域的交界处,则重新转动转盘).
转动转盘的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
落在“10元兑换券”的次数m | 68 | 111 | 136 | 345 | 564 | 701 |
落在“10元兑换券”的频率 | 0.68 | a | 0.68 | 0.69 | b | 0.701 |
(1)a的值为 ,b的值为 ;
(2)假如你去转动该转盘一次,获得“10元兑换券”的概率约是 ;(结果精确到0.01)
(3)根据(2)的结果,在该转盘中表示“20元兑换券”区域的扇形的圆心角大约是多少度?(结果精确到1°)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com