精英家教网 > 初中数学 > 题目详情

【题目】如图1,将一副三角板的直角重合放置,其中∠A30°,∠CDE45°.

1)如图1,求∠EFB的度数;

2)若三角板ACB的位置保持不动,将三角板CDE绕其直角顶点C顺时针方向旋转.

①当旋转至如图2所示位置时,恰好CDAB,则∠ECB的度数为   

②若将三角板CDE继续绕点C旋转,直至回到图1位置.在这一过程中,是否还会存在△CDE其中一边与AB平行?如果存在,请你画出示意图,并直接写出相应的∠ECB的大小;如果不存在,请说明理由.

【答案】1)∠EFB15°;(2)①30°;②存在,图见解析,∠ECB120°、165°、150°、60°或15°.

【解析】

1)根据直角三角形内角和的性质即可得到答案;

2)①根据平行线的性质即可得到答案;

②分5种情况讨论,根据平行线的性质进行计算,即可得到答案.

解:(1)∵∠A30°,∠CDE45°

∴∠ABC90°30°60°,∠E90°45°45°

∴∠EFB=∠ABC﹣∠E60°45°15°

2)①∵CDAB

∴∠ACD=∠A30°

∵∠ACD+ACE=∠DCE90°

ECB+ACE=∠ACB90°

∴∠ECB=∠ACD30°

②如图1CEAB,∠ACE=∠A30°

ECB=∠ACB+ACE90°+30°120°

如图2DEAB时,延长CDABF

则∠BFC=∠D45°

在△BCF中,∠BCF180°﹣∠B﹣∠BFC

180°60°45°75°

∠ECB=∠BCF+ECF75°+90°165°

如图3CDAB时,∠BCD=∠B60°

ECB=∠BCD+EDC60°+90°150°

如图4CEAB时,∠ECB=∠B60°

如图5DEAB时,∠ECB60°45°15°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点AC分别在x轴,y轴上,四边形ABCO为矩形,AB=16AC=20,D与点A关于y轴对称,点EF分别是线段ADAC上的动点(点E不与点AD重合),且∠CEF=ACB.

1)直接写出BC的长是   D的坐标是   

2)证明:AEFDCE相似;

3)当EFC为等腰三角形时,求点E的坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,甲、乙两人在玩转盘游戏时,准备了两个可以自由转动的转盘A,B,每个转盘被分成面积相等的几个扇形,并在每一个扇形内标上数字.游戏规则:同时转动两个转盘,当转盘停止后,指针所指区域的数字之和为0时,甲获胜;数字之和为1时,乙获胜.如果指针恰好指在分割线上,那么重转一次,直到指针指向某一区域为止.

(1)用画树状图或列表法求乙获胜的概率;

(2)这个游戏规则对甲、乙双方公平吗?请判断并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.

1求∠CDE的度数;

2求证:DF是⊙O的切线;

3若AC=2DE,求tan∠ABD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】浠水县商场某柜台销售每台进价分别为160元、120元的A、B两种型号的电风扇,下表是近两周的销售情况:

销售时段

销售数量

销售收入

A种型号

B种型号

第一周

3

4

1200

第二周

5

6

1900

(进价、售价均保持不变,利润=销售收入﹣进货成本)

(1)求A、B两种型号的电风扇的销售单价;

(2)若商场准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?

(3)在(2)的条件下,商场销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.

(1)求证:四边形AECF是矩形;

(2)若AB=6,求菱形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形OABC的顶点A、C分别在的正半轴上,点B的坐标为(3,4)一次函数的图象与边OC、AB分别交于点D、E,并且满足OD= BE.点M是线段DE上的一个动点.

(1)求b的值;

(2)连结OM,若三角形ODM的面积与四边形OAEM的面积之比为1:3,求点M的坐标;

(3)设点N是轴上方平面内的一点,以O、D、M、N为顶点的四边形是菱形,求点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一节数学课上,老师布置了一个任务:

已知,如图1,在中,,用尺规作图作矩形

同学们开动脑筋,想出了很多办法,其中小亮作了图2,他向同学们分享了作法:

①分别以点为圆心,大于长为半径画弧,两弧分别交于点,连接于点

②作射线,在上取点,使

③连接

则四边形就是所求作的矩形.

老师说:“小亮的作法正确.”

写出小亮的作图依据.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店销售甲、乙两种商品,现有如下信息:

请结合以上信息,解答下列问题:

(1)求甲、乙两种商品的进货单价;

(2)已知甲、乙两种商品的零售单价分别为2元、3元,该商店平均每天卖出甲商品500件和乙商品1300件,经市场调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件,商店决定把甲种商品的零售单价下降m(m>0)元,在不考虑其他因素的条件下,求当m为何值时,商店每天销售甲、乙两种商品获取的总利润为1800元(注:单件利润=零售单价﹣进货单价)

查看答案和解析>>

同步练习册答案