精英家教网 > 初中数学 > 题目详情
(2005•湘潭)如图,在直角梯形ABCD中,AB∥DC,∠B=90°,P为BC上一点.
(1)若∠APD=90°,找出图中两个相似的三角形,并加以证明;
(2)若AB=9,DC=4,P为BC的中点,∠APD=90°,求BC的长;
(3)在(2)的条件下,试探求以AD为直径的圆与BC所在直线的位置关系,并予以证明.

【答案】分析:(1)应该是三角形DCP和ABP,可根据等角的余角相等和一组直角来证明.
(2)根据(1)的相似三角形,可得出关于CP,PB,DC,AB的比例关系,由于,BP=PC,可求出BP的长,也就求出了BC的长.
(3)可连接圆心和P点,证明圆心到P的线段等于半径的长并且与BC垂直.由于直角三角形的外接圆的圆心就是斜边的中点,因此OP等于斜边的一半也就是半径的长,OP就是直角梯形ABCD的中位线,那么根据平行即可得出垂直.
解答:解:(1)△ABP∽△PCD.
证明:∵∠APD=90°,
∴∠DPC+∠APB=90°.
∵∠DPC+∠CDP=90°,
∴∠CDP=∠APB.
∵∠C=∠B=90°,
∴△ABP∽△PCD.

(2)∵△ABP∽△PCD,
∴CD:PC=BP:AB.
CD•AB=BP•CP=BP2=9×4=36,
∴BP=PC=6,BC=12.

(3)过D作DE⊥AB于E,
根据勾股定理AD=13.
设AD中点O,连接OP,
∴OP是梯形ABCD的中位线.
∴OP⊥BC.
且0P=(CD+AB)=6.5=AO.
∴以底边AD为直径的圆与线段BC所在的直线相切.
点评:本题考查直角梯形的性质,直角三角形的性质以及相似三角形的判定和性质等知识点.根据相似三角形求出BC的长是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2005•湘潭)如图,在△AOB中,AO=AB,在直角坐标系中,点A的坐标是(2,2),点O的坐标是(0,0),将△AOB平移得到△A′O′B′,使得点A′在y轴上.点O′、B′在x轴上.则点B'的坐标是
(2,0)
(2,0)

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《三角形》(10)(解析版) 题型:解答题

(2005•湘潭)如图,梯形ABCD,AB∥DC,AD=DC=CB,AD、BC的延长线相交于G,CE⊥AG于E,CF⊥AB于F.
(1)请写出图中4组相等的线段(已知的相等线段除外);
(2)从你写出的4组相等的线段中选一组加以证明.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《三角形》(07)(解析版) 题型:填空题

(2005•湘潭)如图,已知弦AB的长等于⊙O的半径,点C是上一点,则∠ACB=    度.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《一元一次方程》(01)(解析版) 题型:填空题

(2005•湘潭)如图,是2005年6月份的日历,像图中那样竖着圈住三个数.如果圈住的三个数的和为36,则这三个数中最大的数为   

查看答案和解析>>

科目:初中数学 来源:2005年湖南省湘潭市中考数学试卷(大纲卷)(解析版) 题型:填空题

(2005•湘潭)如图,是2005年6月份的日历,像图中那样竖着圈住三个数.如果圈住的三个数的和为36,则这三个数中最大的数为   

查看答案和解析>>

同步练习册答案